skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid

Abstract

Electrocatalysis of the oxygen evolution reaction is central to several energy technologies including electrolyzers, solar fuel generators, and air-breathing batteries. Strong acid electrolytes are desirable for many implementations of these technologies, although the deployment of such device designs is often hampered by the lack of non-precious-metal oxygen evolution electrocatalysts, with Ir-based oxides comprising the only known catalysts that exhibit stable activity at low overpotential. During our exploration of the Mn-Sb-O system for precious-metal-free electrocatalysts, we discovered that Mn can be incorporated into the rutile oxide structure at much higher concentrations than previously known, and that these Mn-rich rutile alloys exhibit great catalytic activity with current densities exceeding 50 mA cm-2 at 0.58 V overpotential and catalysis onset at 0.3 V overpotential. While this activity does not surpass that of IrO2, Pourbaix analysis reveals that the Mn-Sb rutile oxide alloys have the same or better thermodynamic stability under operational conditions. By combining combinatorial composition, structure, and activity mapping with synchrotron X-ray absorption measurements and first-principles materials chemistry calculations, we provide a comprehensive understanding of these oxide alloys and identify the critical role of Sb in stabilizing the trivalent Mn octahedra that have been shown to be effective oxygen evolution reaction (OER)more » catalysts.« less

Authors:
 [1]; ORCiD logo [1];  [2];  [2];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1530318
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 8; Journal Issue: 12; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zhou, Lan, Shinde, Aniketa, Montoya, Joseph H., Singh, Arunima, Gul, Sheraz, Yano, Junko, Ye, Yifan, Crumlin, Ethan J., Richter, Matthias H., Cooper, Jason K., Stein, Helge S., Haber, Joel A., Persson, Kristin A., and Gregoire, John M.. Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. United States: N. p., 2018. Web. https://doi.org/10.1021/acscatal.8b02689.
Zhou, Lan, Shinde, Aniketa, Montoya, Joseph H., Singh, Arunima, Gul, Sheraz, Yano, Junko, Ye, Yifan, Crumlin, Ethan J., Richter, Matthias H., Cooper, Jason K., Stein, Helge S., Haber, Joel A., Persson, Kristin A., & Gregoire, John M.. Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid. United States. https://doi.org/10.1021/acscatal.8b02689
Zhou, Lan, Shinde, Aniketa, Montoya, Joseph H., Singh, Arunima, Gul, Sheraz, Yano, Junko, Ye, Yifan, Crumlin, Ethan J., Richter, Matthias H., Cooper, Jason K., Stein, Helge S., Haber, Joel A., Persson, Kristin A., and Gregoire, John M.. Tue . "Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid". United States. https://doi.org/10.1021/acscatal.8b02689. https://www.osti.gov/servlets/purl/1530318.
@article{osti_1530318,
title = {Rutile Alloys in the Mn–Sb–O System Stabilize Mn3+ To Enable Oxygen Evolution in Strong Acid},
author = {Zhou, Lan and Shinde, Aniketa and Montoya, Joseph H. and Singh, Arunima and Gul, Sheraz and Yano, Junko and Ye, Yifan and Crumlin, Ethan J. and Richter, Matthias H. and Cooper, Jason K. and Stein, Helge S. and Haber, Joel A. and Persson, Kristin A. and Gregoire, John M.},
abstractNote = {Electrocatalysis of the oxygen evolution reaction is central to several energy technologies including electrolyzers, solar fuel generators, and air-breathing batteries. Strong acid electrolytes are desirable for many implementations of these technologies, although the deployment of such device designs is often hampered by the lack of non-precious-metal oxygen evolution electrocatalysts, with Ir-based oxides comprising the only known catalysts that exhibit stable activity at low overpotential. During our exploration of the Mn-Sb-O system for precious-metal-free electrocatalysts, we discovered that Mn can be incorporated into the rutile oxide structure at much higher concentrations than previously known, and that these Mn-rich rutile alloys exhibit great catalytic activity with current densities exceeding 50 mA cm-2 at 0.58 V overpotential and catalysis onset at 0.3 V overpotential. While this activity does not surpass that of IrO2, Pourbaix analysis reveals that the Mn-Sb rutile oxide alloys have the same or better thermodynamic stability under operational conditions. By combining combinatorial composition, structure, and activity mapping with synchrotron X-ray absorption measurements and first-principles materials chemistry calculations, we provide a comprehensive understanding of these oxide alloys and identify the critical role of Sb in stabilizing the trivalent Mn octahedra that have been shown to be effective oxygen evolution reaction (OER) catalysts.},
doi = {10.1021/acscatal.8b02689},
journal = {ACS Catalysis},
number = 12,
volume = 8,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a-c) 2D XRD plots of 3 MnxSb1-xOz libraries annealed at 700 °C, 550 °C, and as-deposited. In each heat map image, each data column corresponds to a 1D XRD pattern at that composition, and the most Sb-rich observation of the rutile peak is indicated with a white *more » that moves to higher Mn concentration with decreasing temperature. The current densities obtained at 1.79 V vs RHE in CV measurements on 3 libraries in 1.0 M H2SO4 aqueous solution are superimposed on the corresponding XRD maps. For the as-deposited library, 3 consecutive CVs were performed and their maximum current density values are plotted in the order of cyan, red, and blue. (d) XRF-determined composition change after CV measurements for libraries annealed at 700 °C (1 CV cycle) and without annealing (3 CV cycles).« less

Save / Share:

Works referenced in this record:

Will Solar-Driven Water-Splitting Devices See the Light of Day?
journal, September 2013

  • McKone, James R.; Lewis, Nathan S.; Gray, Harry B.
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4021518

Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016

  • Reier, Tobias; Nong, Hong Nhan; Teschner, Detre
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601275

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices
journal, March 2015

  • McCrory, Charles C. L.; Jung, Suho; Ferrer, Ivonne M.
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/ja510442p

Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices
journal, October 2016

  • Xiang, Chengxiang; Weber, Adam Z.; Ardo, Shane
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201510463

An electrochemical engineering assessment of the operational conditions and constraints for solar-driven water-splitting systems at near-neutral pH
journal, January 2015

  • Singh, Meenesh R.; Papadantonakis, Kimberly; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE01721A

A low-noble-metal W 1−x Ir x O 3−δ water oxidation electrocatalyst for acidic media via rapid plasma synthesis
journal, January 2017

  • Kumari, Sudesh; Ajayi, Babajide Patrick; Kumar, Bijandra
  • Energy & Environmental Science, Vol. 10, Issue 11
  • DOI: 10.1039/C7EE02626A

Physicochemical Characterization of Mixed RuO 2 −SnO 2 Solid Solutions
journal, March 2005

  • Gaudet, J.; Tavares, A. C.; Trasatti, S.
  • Chemistry of Materials, Vol. 17, Issue 6
  • DOI: 10.1021/cm048129l

Electrochemical study of Ir–Sn–Sb–O materials as catalyst-supports for the oxygen evolution reaction
journal, July 2015

  • Pérez-Viramontes, N. J.; Escalante-García, I. L.; Guzmán-Martínez, C.
  • Journal of Applied Electrochemistry, Vol. 45, Issue 11
  • DOI: 10.1007/s10800-015-0875-3

Novel (Ir,Sn,Nb)O2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis
journal, February 2012

  • Kadakia, Karan; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.
  • International Journal of Hydrogen Energy, Vol. 37, Issue 4, p. 3001-3013
  • DOI: 10.1016/j.ijhydene.2011.11.055

Conversion of inert cryptomelane-type manganese oxide into a highly efficient oxygen evolution catalyst via limited Ir doping
journal, January 2016

  • Sun, Wei; Cao, Li-mei; Yang, Ji
  • Journal of Materials Chemistry A, Vol. 4, Issue 32
  • DOI: 10.1039/C6TA03011D

IrO 2 -TiO 2 : A High-Surface-Area, Active, and Stable Electrocatalyst for the Oxygen Evolution Reaction
journal, February 2017


Performance of a PEM water electrolysis cell using IrxRuyTazO2IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode
journal, September 2007


Oxygen evolution on Ru1 − x Ni x O2 − y nanocrystalline electrodes
journal, August 2008

  • Macounová, Kateřina; Jirkovský, Jakub; Makarova, Marina V.
  • Journal of Solid State Electrochemistry, Vol. 13, Issue 6
  • DOI: 10.1007/s10008-008-0624-1

Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER)
journal, September 2015

  • Reier, Tobias; Pawolek, Zarina; Cherevko, Serhiy
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b07788

Cobalt Oxide Electrode Doped with Iridium Oxide as Highly Efficient Water Oxidation Electrode
journal, August 2015


Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions
journal, January 2017


Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media
journal, October 2017

  • Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.
  • Nature Chemistry, Vol. 10, Issue 1
  • DOI: 10.1038/nchem.2874

High-performance iron (III) oxide electrocatalyst for water oxidation in strongly acidic media
journal, September 2018


High-Throughput Screening for Acid-Stable Oxygen Evolution Electrocatalysts in the (Mn–Co–Ta–Sb)O x Composition Space
journal, November 2014


Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid
journal, January 2017

  • Huynh, Michael; Ozel, Tuncay; Liu, Chong
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/C7SC01239J

Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts
journal, July 2016

  • Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28367

Crystalline nickel manganese antimonate as a stable water-oxidation catalyst in aqueous 1.0 M H 2 SO 4
journal, January 2017

  • Moreno-Hernandez, Ivan A.; MacFarland, Clara A.; Read, Carlos G.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01486D

Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Ti-Stabilized MnO 2
journal, August 2015

  • Frydendal, Rasmus; Paoli, Elisa A.; Chorkendorff, Ib
  • Advanced Energy Materials, Vol. 5, Issue 22
  • DOI: 10.1002/aenm.201500991

Manganese oxide minerals: Crystal structures and economic and environmental significance
journal, March 1999


Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO 2 Electrocatalysts
journal, January 2012

  • Takashima, Toshihiro; Hashimoto, Kazuhito; Nakamura, Ryuhei
  • Journal of the American Chemical Society, Vol. 134, Issue 3
  • DOI: 10.1021/ja206511w

Inhibition of Charge Disproportionation of MnO 2 Electrocatalysts for Efficient Water Oxidation under Neutral Conditions
journal, October 2012

  • Takashima, Toshihiro; Hashimoto, Kazuhito; Nakamura, Ryuhei
  • Journal of the American Chemical Society, Vol. 134, Issue 44
  • DOI: 10.1021/ja306499n

Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide
journal, January 2012

  • Zaharieva, Ivelina; Chernev, Petko; Risch, Marcel
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21191b

In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction
journal, June 2013

  • Gorlin, Yelena; Lassalle-Kaiser, Benedikt; Benck, Jesse D.
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja3104632

Nature of Activated Manganese Oxide for Oxygen Evolution
journal, November 2015

  • Huynh, Michael; Shi, Chenyang; Billinge, Simon J. L.
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b06382

Electrochemical trapping of metastable Mn 3+ ions for activation of MnO 2 oxygen evolution catalysts
journal, May 2018

  • Morgan Chan, Zamyla; Kitchaev, Daniil A.; Nelson Weker, Johanna
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722235115

Preparation of Mesoporous Sb-, F-, and In-Doped SnO 2 Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells
journal, January 2015

  • Oh, Hyung-Suk; Nong, Hong Nhan; Strasser, Peter
  • Advanced Functional Materials, Vol. 25, Issue 7
  • DOI: 10.1002/adfm.201401919

Combinatorial Search for Improved Metal Oxide Oxygen Evolution Electrocatalysts in Acidic Electrolytes
journal, January 2013

  • Seley, David; Ayers, Katherine; Parkinson, B. A.
  • ACS Combinatorial Science, Vol. 15, Issue 2
  • DOI: 10.1021/co300086h

Combinatorial thin film composition mapping using three dimensional deposition profiles
journal, March 2015

  • Suram, Santosh K.; Zhou, Lan; Becerra-Stasiewicz, Natalie
  • Review of Scientific Instruments, Vol. 86, Issue 3
  • DOI: 10.1063/1.4914466

Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements
journal, February 2013

  • Gregoire, John M.; Xiang, Chengxiang; Liu, Xiaonao
  • Review of Scientific Instruments, Vol. 84, Issue 2
  • DOI: 10.1063/1.4790419

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Electrochemical Stability of Metastable Materials
journal, November 2017


A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2
journal, May 2010

  • Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda
  • Review of Scientific Instruments, Vol. 81, Issue 5
  • DOI: 10.1063/1.3427218

Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy
journal, May 2012

  • Manceau, A.; Marcus, M. A.; Grangeon, S.
  • American Mineralogist, Vol. 97, Issue 5-6
  • DOI: 10.2138/am.2012.3903

Rutile-Type Mn(1-x)Sb(1+x)O4 Phases, 0 <= x <= 1/3, Synthesized by the Sol--Gel Technique.
journal, January 1993


Sol–gel preparation of M-Sb oxides from Sb (OBu n ) 3 -M-acetate precursors with M = Mn, Co, Ni
journal, January 1993


Thermodynamic limit for synthesis of metastable inorganic materials
journal, April 2018

  • Aykol, Muratahan; Dwaraknath, Shyam S.; Sun, Wenhao
  • Science Advances, Vol. 4, Issue 4
  • DOI: 10.1126/sciadv.aaq0148

Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: petrology and crystal-chemistry
journal, October 1997


Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
journal, January 2011

  • Biesinger, Mark C.; Payne, Brad P.; Grosvenor, Andrew P.
  • Applied Surface Science, Vol. 257, Issue 7, p. 2717-2730
  • DOI: 10.1016/j.apsusc.2010.10.051

Photochemical Water Oxidation by Crystalline Polymorphs of Manganese Oxides: Structural Requirements for Catalysis
journal, February 2013

  • Robinson, David M.; Go, Yong Bok; Mui, Michelle
  • Journal of the American Chemical Society, Vol. 135, Issue 9
  • DOI: 10.1021/ja310286h

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

    Works referencing / citing this record:

    Efficient Pourbaix diagrams of many-element compounds
    journal, January 2019

    • Patel, Anjli M.; Nørskov, Jens K.; Persson, Kristin A.
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 45
    • DOI: 10.1039/c9cp04799a

    Ultrafine Defective RuO 2 Electrocatayst Integrated on Carbon Cloth for Robust Water Oxidation in Acidic Media
    journal, August 2019


    Tracking materials science data lineage to manage millions of materials experiments and analyses
    journal, July 2019

    • Soedarmadji, Edwin; Stein, Helge S.; Suram, Santosh K.
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0216-x

    Cobalt-doped hematite thin films for electrocatalytic water oxidation in highly acidic media
    journal, January 2019

    • Kwong, Wai Ling; Lee, Cheng Choo; Shchukarev, Andrey
    • Chemical Communications, Vol. 55, Issue 34
    • DOI: 10.1039/c9cc01369e

    Polyoxometalate/Lead Composite Anode for Efficient Oxygen Evolution in Zinc Electrowinning
    journal, January 2019

    • Yang, Chang-jiang
    • Journal of The Electrochemical Society, Vol. 166, Issue 4
    • DOI: 10.1149/2.0751904jes

    Design of Multi‐Metallic‐Based Electrocatalysts for Enhanced Water Oxidation
    journal, May 2019