skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lifshitz Transitions Induced by Temperature and Surface Doping in Type-II Weyl Semimetal Candidate T d-WTe 2

Abstract

Using high resolution angle-resolved photoemission spectroscopy, we systematically investigate the electronic structure of T d-WTe 2, which has attracted substantial research attention due to its diverse and fascinating properties, especially the predicted type-II topological Weyl semimetal (TWS) phase. The observed significant lattice contraction and the fact that our ARPES measurements are well reproduced by our ab initio calculations under reduced lattice constants support the theoretical prediction of a type-II TWS phase in T d-WTe 2 at temperatures below 10 K. We also investigate the evolution of the electronic structure of T d-WTe 2 and realize two-stage Lifshitz transitions induced by temperature regulation and surface modification, respectively. Furthermore, our results not only shed light on the understanding of the electronic structure of T d-WTe 2, but also provide a promising method to manipulate the electronic structures and physical properties of the type-II TWS T d-XTe 2.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [7];  [8];  [9];  [9];  [3];  [3];  [10]; ORCiD logo [1]
  1. Tsinghua Univ., Beijing (People's Republic of China)
  2. ShanghaiTech Univ. and CAS-Shanghai Science Research Center, Shanghai (People's Republic of China)
  3. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
  4. Univ. of Oxford, Oxford (United Kingdom); Chinese Academy of Sciences, Shanghai (People's Republic of China)
  5. ShanghaiTech Univ. and CAS-Shanghai Science Research Center, Shanghai (People's Republic of China); Univ. of Oxford, Oxford (United Kingdom); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pohang Accelerator Lab POSTECH, Pohang (Korea)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  7. Texas A&M Univ., College Station, TX (United States)
  8. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  9. Nanjing Univ., Nanjing (People's Republic of China)
  10. Tsinghua Univ., Beijing (People's Republic of China); ShanghaiTech Univ. and CAS-Shanghai Science Research Center, Shanghai (People's Republic of China); Univ. of Oxford, Oxford (United Kingdom)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1530308
Alternate Identifier(s):
OSTI ID: 1398739
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physica Status Solidi rrl
Additional Journal Information:
Journal Volume: 11; Journal Issue: 12; Journal ID: ISSN 1862-6254
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; angle‐resolved photoemission spectroscopy; band reconstruction; Lifshitz transition; type‐II Weyl semimetal

Citation Formats

Zhang, Qihang, Liu, Zhongkai, Sun, Yan, Yang, Haifeng, Jiang, Juan, Mo, Sung -Kwan, Hussain, Zahid, Qian, Xiaofeng, Fu, Liang, Yao, Shuhua, Lu, Minghui, Felser, Claudia, Yan, Binghai, Chen, Yulin, and Yang, Lexian. Lifshitz Transitions Induced by Temperature and Surface Doping in Type-II Weyl Semimetal Candidate Td-WTe2. United States: N. p., 2017. Web. doi:10.1002/pssr.201700209.
Zhang, Qihang, Liu, Zhongkai, Sun, Yan, Yang, Haifeng, Jiang, Juan, Mo, Sung -Kwan, Hussain, Zahid, Qian, Xiaofeng, Fu, Liang, Yao, Shuhua, Lu, Minghui, Felser, Claudia, Yan, Binghai, Chen, Yulin, & Yang, Lexian. Lifshitz Transitions Induced by Temperature and Surface Doping in Type-II Weyl Semimetal Candidate Td-WTe2. United States. doi:10.1002/pssr.201700209.
Zhang, Qihang, Liu, Zhongkai, Sun, Yan, Yang, Haifeng, Jiang, Juan, Mo, Sung -Kwan, Hussain, Zahid, Qian, Xiaofeng, Fu, Liang, Yao, Shuhua, Lu, Minghui, Felser, Claudia, Yan, Binghai, Chen, Yulin, and Yang, Lexian. Mon . "Lifshitz Transitions Induced by Temperature and Surface Doping in Type-II Weyl Semimetal Candidate Td-WTe2". United States. doi:10.1002/pssr.201700209. https://www.osti.gov/servlets/purl/1530308.
@article{osti_1530308,
title = {Lifshitz Transitions Induced by Temperature and Surface Doping in Type-II Weyl Semimetal Candidate Td-WTe2},
author = {Zhang, Qihang and Liu, Zhongkai and Sun, Yan and Yang, Haifeng and Jiang, Juan and Mo, Sung -Kwan and Hussain, Zahid and Qian, Xiaofeng and Fu, Liang and Yao, Shuhua and Lu, Minghui and Felser, Claudia and Yan, Binghai and Chen, Yulin and Yang, Lexian},
abstractNote = {Using high resolution angle-resolved photoemission spectroscopy, we systematically investigate the electronic structure of Td-WTe2, which has attracted substantial research attention due to its diverse and fascinating properties, especially the predicted type-II topological Weyl semimetal (TWS) phase. The observed significant lattice contraction and the fact that our ARPES measurements are well reproduced by our ab initio calculations under reduced lattice constants support the theoretical prediction of a type-II TWS phase in Td-WTe2 at temperatures below 10 K. We also investigate the evolution of the electronic structure of Td-WTe2 and realize two-stage Lifshitz transitions induced by temperature regulation and surface modification, respectively. Furthermore, our results not only shed light on the understanding of the electronic structure of Td-WTe2, but also provide a promising method to manipulate the electronic structures and physical properties of the type-II TWS Td-XTe2.},
doi = {10.1002/pssr.201700209},
journal = {Physica Status Solidi rrl},
number = 12,
volume = 11,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Basic characterization of Td-WTe2. (A) The quasi-1D crystal structure of Td-WTe2. The W atoms form zigzag chains in the b direction and the flat Te layers winkles to compensate the lattice distortion. (B) The lattice constants of WTe2 as a function of temperature. (C) Core level photoemission spectrummore » of WTe2 showing characteristic Te 4d and W 4f peaks. (D) Fermi surface in multiple BZs showing the quasi-1D fermiology of Td-WTe2. (E) The predicted locations of Weyl points (WP) in the projected surface BZ. The Weyl points with different chirality is indicated by different colors. (F) The calculated band structure of Td-WTe2 near the Weyl points along cut #1 as marked in panel e. The solid blue curves are the calculated bulk bands. (G) (i),Calculated constant energy contour of WTe2 at 55 meV above the Fermi energy (EF). (ii), The zoom-in plot shows the surface Fermi arc (green curve) connecting the electron and hole pockets.« less

Save / Share:

Works referenced in this record:

Spin texture in type-II Weyl semimetal WTe 2
journal, November 2016


Temperature-induced Lifshitz transition in topological insulator candidate HfTe 5
journal, July 2017


Quick iterative scheme for the calculation of transfer matrices: application to Mo (100)
journal, May 1984

  • Sancho, M. P. Lopez; Sancho, J. M. Lopez; Rubio, J.
  • Journal of Physics F: Metal Physics, Vol. 14, Issue 5
  • DOI: 10.1088/0305-4608/14/5/016

Three-dimensionality of the bulk electronic structure in WTe 2
journal, May 2017


Temperature effect on lattice and electronic structures of WTe 2 from first-principles study
journal, January 2017

  • Liu, Gang; Liu, Huimei; Zhou, Jian
  • Journal of Applied Physics, Vol. 121, Issue 4
  • DOI: 10.1063/1.4974946

Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2
journal, July 2016

  • Huang, Lunan; McCormick, Timothy M.; Ochi, Masayuki
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4685

Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe 2
journal, December 2016


Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

Observation of spin-polarized bands and domain-dependent Fermi arcs in polar Weyl semimetal MoT e 2
journal, March 2017


Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide
journal, August 2015

  • Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3437

wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe 1.98 Crystals at the Quasiclassical Regime
journal, March 2017


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
journal, September 2016

  • Deng, Ke; Wan, Guoliang; Deng, Peng
  • Nature Physics, Vol. 12, Issue 12
  • DOI: 10.1038/nphys3871

Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr 2 Se 4
journal, October 2011


MoTe 2 : A Type-II Weyl Topological Metal
journal, July 2016


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2
journal, February 2016

  • Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10639

Weyl semimetals from noncentrosymmetric topological insulators
journal, October 2014


Friedel oscillations due to Fermi arcs in Weyl semimetals
journal, November 2012


Weyl Node and Spin Texture in Trigonal Tellurium and Selenium
journal, May 2015


Composition and temperature-dependent phase transition in miscible Mo1−xWxTe2 single crystals
journal, March 2017

  • Lv, Yang-Yang; Cao, Lin; Li, Xiao
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep44587

Edge conduction in monolayer WTe2
journal, April 2017

  • Fei, Zaiyao; Palomaki, Tauno; Wu, Sanfeng
  • Nature Physics, Vol. 13, Issue 7
  • DOI: 10.1038/nphys4091

Magneto-optical conductivity of Weyl semimetals
journal, June 2013


Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family
journal, November 2015

  • Liu, Z. K.; Yang, L. X.; Sun, Y.
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4457

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
journal, November 2014


Prediction of Weyl semimetal in orthorhombic MoTe 2
journal, October 2015


Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
journal, July 2015

  • Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8805

Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
journal, September 2016


Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2
journal, September 2016


Topological electronic structure and Weyl semimetal in the TlBiSe 2 class of semiconductors
journal, September 2012


Surface Fermi arc connectivity in the type-II Weyl semimetal candidate WTe 2
journal, October 2016


Observation of Weyl nodes in TaAs
journal, August 2015

  • Lv, B. Q.; Xu, N.; Weng, H. M.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3426

Topological surface states and Fermi arcs of the noncentrosymmetric Weyl semimetals TaAs, TaP, NbAs, and NbP
journal, September 2015


Weyl semimetal phase in the non-centrosymmetric compound TaAs
journal, August 2015

  • Yang, L. X.; Liu, Z. K.; Sun, Y.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3425

Superconductivity in Weyl semimetal candidate MoTe2
journal, March 2016

  • Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11038

Signature of type-II Weyl semimetal phase in MoTe2
journal, January 2017

  • Jiang, J.; Liu, Z. K.; Sun, Y.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13973

Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5
journal, May 2017

  • Zhang, Yan; Wang, Chenlu; Yu, Li
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15512

Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe 2
journal, November 2014


Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe 2
journal, October 2015


Anomalous transport of Weyl fermions in Weyl semimetals
journal, February 2014


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

Layer-dependent quantum cooperation of electron and hole states in the anomalous semimetal WTe2
journal, February 2016

  • Das, Pranab Kumar; Di Sante, D.; Vobornik, I.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10847

Quantum spin Hall state in monolayer 1T'-WTe2
journal, June 2017

  • Tang, Shujie; Zhang, Chaofan; Wong, Dillon
  • Nature Physics, Vol. 13, Issue 7
  • DOI: 10.1038/nphys4174

Temperature-Induced Lifshitz Transition in WTe 2
journal, October 2015


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.