skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study

Abstract

Oxidative decomposition of solid lithium peroxide is an important part of the charging process in a Li-O2 battery. Here, we investigate oxidative decomposition mechanisms of lithium peroxide clusters as molecular models for solid lithium peroxide using density functional methods to understand charging processes in advanced energy storage systems. Most calculations are done using a (Li2O2)4 cluster with similar results obtained from a larger (Li2O2)16 cluster. Reaction pathways of the clusters involving different sequences of oxidation, oxygen evolution, lithium cation removal, and spin excitation are investigated. The computations suggest that certain oxidative decomposition routes may not have dependence on the oxygen evolution or Li-ion removal kinetics due to the exothermicity of oxygen removal and Li+ removal (by solvent) upon oxidation. The computed charge potentials evaluated using a tetramer model indicates that it is possible to have low overcharge potential provided there exists a good electronic conductivity to facilitate the oxidative decomposition. Finally, oxidation potentials of a series of LixOy clusters are investigated to assess their dependence on stoichiometry and how the local site from which the electrons are being removed affects the charge potentials.

Authors:
 [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Joint Center for Energy Storage Research (JCESR)
OSTI Identifier:
1530195
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Physics
Additional Journal Information:
Journal Volume: 117; Journal Issue: 9-12; Journal ID: ISSN 0026-8976
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; charge overpotential; density functional theory; lithium peroxide; oxidative decomposition

Citation Formats

Assary, Rajeev S., and Curtiss, Larry A. Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study. United States: N. p., 2019. Web. doi:10.1080/00268976.2018.1559955.
Assary, Rajeev S., & Curtiss, Larry A. Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study. United States. doi:https://doi.org/10.1080/00268976.2018.1559955
Assary, Rajeev S., and Curtiss, Larry A. Mon . "Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study". United States. doi:https://doi.org/10.1080/00268976.2018.1559955. https://www.osti.gov/servlets/purl/1530195.
@article{osti_1530195,
title = {Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study},
author = {Assary, Rajeev S. and Curtiss, Larry A.},
abstractNote = {Oxidative decomposition of solid lithium peroxide is an important part of the charging process in a Li-O2 battery. Here, we investigate oxidative decomposition mechanisms of lithium peroxide clusters as molecular models for solid lithium peroxide using density functional methods to understand charging processes in advanced energy storage systems. Most calculations are done using a (Li2O2)4 cluster with similar results obtained from a larger (Li2O2)16 cluster. Reaction pathways of the clusters involving different sequences of oxidation, oxygen evolution, lithium cation removal, and spin excitation are investigated. The computations suggest that certain oxidative decomposition routes may not have dependence on the oxygen evolution or Li-ion removal kinetics due to the exothermicity of oxygen removal and Li+ removal (by solvent) upon oxidation. The computed charge potentials evaluated using a tetramer model indicates that it is possible to have low overcharge potential provided there exists a good electronic conductivity to facilitate the oxidative decomposition. Finally, oxidation potentials of a series of LixOy clusters are investigated to assess their dependence on stoichiometry and how the local site from which the electrons are being removed affects the charge potentials.},
doi = {10.1080/00268976.2018.1559955},
journal = {Molecular Physics},
number = 9-12,
volume = 117,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
journal, January 2007

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 2
  • DOI: 10.1021/jp065403l

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
journal, February 2010

  • Hummelshøj, J. S.; Blomqvist, J.; Datta, S.
  • The Journal of Chemical Physics, Vol. 132, Issue 7
  • DOI: 10.1063/1.3298994

Review—Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air Battery Performance
journal, January 2015

  • Lu, Jun; Lau, Kah Chun; Sun, Yang-Kook
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0061514jes

Atomistic Modeling of the Charge Process in Lithium/Air Batteries
journal, November 2015

  • Dabrowski, Tatjana; Ciacchi, Lucio Colombi
  • The Journal of Physical Chemistry C, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpcc.5b09002

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Influence of Hydrocarbon and CO 2 on the Reversibility of Li–O 2 Chemistry Using In Situ Ambient Pressure X-ray Photoelectron Spectroscopy
journal, December 2013

  • Lu, Yi-Chun; Crumlin, Ethan J.; Carney, Thomas J.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 49
  • DOI: 10.1021/jp409453s

Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
journal, April 2013

  • Borodin, Oleg; Behl, Wishvender; Jow, T. Richard
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp400527c

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
journal, April 2010

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 19
  • DOI: 10.1021/jp102019y

Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

A Conceptual DFT Approach for the Evaluation and Interpretation of Redox Potentials
journal, October 2007

  • Moens, Jan; Geerlings, Paul; Roos, Goedele
  • Chemistry - A European Journal, Vol. 13, Issue 29
  • DOI: 10.1002/chem.200601896

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Nucleation and Growth of Lithium Peroxide in the Li–O 2 Battery
journal, August 2015


A lithium–oxygen battery with a long cycle life in an air-like atmosphere
journal, March 2018

  • Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram
  • Nature, Vol. 555, Issue 7697
  • DOI: 10.1038/nature25984

Aprotic and Aqueous Li–O2 Batteries
journal, April 2014

  • Lu, Jun; Li, Li; Park, Jin-Bum
  • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
  • DOI: 10.1021/cr400573b

The Lithium/Air Battery: Still an Emerging System or a Practical Reality?
journal, December 2014

  • Grande, Lorenzo; Paillard, Elie; Hassoun, Jusef
  • Advanced Materials, Vol. 27, Issue 5
  • DOI: 10.1002/adma.201403064

Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium–Air Batteries
journal, November 2012

  • Lau, Kah Chun; Assary, Rajeev S.; Redfern, Paul
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp306024f

Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
journal, February 2011

  • Bryantsev, Vyacheslav S.; Blanco, Mario
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz1016526

Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure
journal, November 2011

  • Lau, Kah Chun; Curtiss, Larry A.; Greeley, Jeffrey
  • The Journal of Physical Chemistry C, Vol. 115, Issue 47, p. 23625-23633
  • DOI: 10.1021/jp206796h

Theoretical evidence for low kinetic overpotentials in Li-O 2 electrochemistry
journal, January 2013

  • Hummelshøj, J. S.; Luntz, A. C.; Nørskov, J. K.
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4773242

Identifying Descriptors for Solvent Stability in Nonaqueous Li–O 2 Batteries
journal, March 2014

  • Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 8
  • DOI: 10.1021/jz500485r

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
journal, April 2017


Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
journal, December 2011

  • Radin, Maxwell D.; Rodriguez, Jill F.; Tian, Feng
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja208944x

Low hole polaron migration barrier in lithium peroxide
journal, February 2012


Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds
journal, October 2013

  • Guerard, Jennifer J.; Arey, J. Samuel
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
  • DOI: 10.1021/ct4004433

A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
journal, January 2017

  • Goerigk, Lars; Hansen, Andreas; Bauer, Christoph
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 48
  • DOI: 10.1039/C7CP04913G

A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
journal, January 1996

  • Abraham, K. M.; Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
  • DOI: 10.1149/1.1836378

The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
journal, January 2010

  • Lu, Yi-Chun; Gasteiger, Hubert A.; Parent, Michael C.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 6, p. A69-A72
  • DOI: 10.1149/1.3363047

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
journal, August 2006

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp063552y

Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries
journal, June 2012

  • Bryantsev, Vyacheslav S.; Faglioni, Francesco
  • The Journal of Physical Chemistry A, Vol. 116, Issue 26
  • DOI: 10.1021/jp301537w

Stability of Lithium Superoxide LiO2 in the Gas Phase: Computational Study of Dimerization and Disproportionation Reactions
journal, August 2010

  • Bryantsev, Vyacheslav S.; Blanco, Mario; Faglioni, Francesco
  • The Journal of Physical Chemistry A, Vol. 114, Issue 31, p. 8165-8169
  • DOI: 10.1021/jp1047584

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

The role of nanotechnology in the development of battery materials for electric vehicles
journal, December 2016


Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates
journal, January 2004

  • Vollmer, James M.; Curtiss, Larry A.; Vissers, Donald R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 1
  • DOI: 10.1149/1.1633765

Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery
journal, January 2011

  • Laoire, Cormac Ó; Mukerjee, Sanjeev; Plichta, Edward J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 3
  • DOI: 10.1149/1.3531981

    Works referencing / citing this record:

    Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium–Air Batteries
    journal, November 2012

    • Lau, Kah Chun; Assary, Rajeev S.; Redfern, Paul
    • The Journal of Physical Chemistry C, Vol. 116, Issue 45
    • DOI: 10.1021/jp306024f

    Stability of Lithium Superoxide LiO2 in the Gas Phase: Computational Study of Dimerization and Disproportionation Reactions
    journal, August 2010

    • Bryantsev, Vyacheslav S.; Blanco, Mario; Faglioni, Francesco
    • The Journal of Physical Chemistry A, Vol. 114, Issue 31, p. 8165-8169
    • DOI: 10.1021/jp1047584

    Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
    journal, February 2011

    • Bryantsev, Vyacheslav S.; Blanco, Mario
    • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
    • DOI: 10.1021/jz1016526

    The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
    journal, January 2010

    • Lu, Yi-Chun; Gasteiger, Hubert A.; Parent, Michael C.
    • Electrochemical and Solid-State Letters, Vol. 13, Issue 6, p. A69-A72
    • DOI: 10.1149/1.3363047

    Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery
    journal, January 2011

    • Laoire, Cormac Ó; Mukerjee, Sanjeev; Plichta, Edward J.
    • Journal of The Electrochemical Society, Vol. 158, Issue 3
    • DOI: 10.1149/1.3531981

    Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
    journal, December 2011

    • Radin, Maxwell D.; Rodriguez, Jill F.; Tian, Feng
    • Journal of the American Chemical Society, Vol. 134, Issue 2
    • DOI: 10.1021/ja208944x

    Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery
    journal, April 2010

    • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
    • The Journal of Physical Chemistry C, Vol. 114, Issue 19
    • DOI: 10.1021/jp102019y

    Li–O2 and Li–S batteries with high energy storage
    journal, January 2012

    • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
    • Nature Materials, Vol. 11, Issue 1, p. 19-29
    • DOI: 10.1038/nmat3191

    Identifying Descriptors for Solvent Stability in Nonaqueous Li–O 2 Batteries
    journal, March 2014

    • Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian
    • The Journal of Physical Chemistry Letters, Vol. 5, Issue 8
    • DOI: 10.1021/jz500485r

    Aprotic and Aqueous Li–O2 Batteries
    journal, April 2014

    • Lu, Jun; Li, Li; Park, Jin-Bum
    • Chemical Reviews, Vol. 114, Issue 11, p. 5611-5640
    • DOI: 10.1021/cr400573b

    Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
    journal, April 2013

    • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
    • The Journal of Physical Chemistry C, Vol. 117, Issue 16
    • DOI: 10.1021/jp400229n

    Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
    journal, March 2012

    • McCloskey, B. D.; Speidel, A.; Scheffler, R.
    • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
    • DOI: 10.1021/jz300243r

    Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
    journal, January 2007

    • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
    • The Journal of Physical Chemistry B, Vol. 111, Issue 2
    • DOI: 10.1021/jp065403l

    Nucleation and Growth of Lithium Peroxide in the Li–O 2 Battery
    journal, August 2015


    Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates
    journal, January 2004

    • Vollmer, James M.; Curtiss, Larry A.; Vissers, Donald R.
    • Journal of The Electrochemical Society, Vol. 151, Issue 1
    • DOI: 10.1149/1.1633765

    Oxidative decomposition mechanisms of lithium peroxide clusters: an Ab Initio study
    text, January 2019


    The role of nanotechnology in the development of battery materials for electric vehicles
    journal, December 2016


    Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
    journal, September 2012

    • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
    • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
    • DOI: 10.1021/jz301359t

    The Carbon Electrode in Nonaqueous Li–O2 Cells
    journal, December 2012

    • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
    • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
    • DOI: 10.1021/ja310258x

    Aqueous Solvation Free Energies of Ions and Ion−Water Clusters Based on an Accurate Value for the Absolute Aqueous Solvation Free Energy of the Proton
    journal, August 2006

    • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
    • The Journal of Physical Chemistry B, Vol. 110, Issue 32
    • DOI: 10.1021/jp063552y

    Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure
    journal, November 2011

    • Lau, Kah Chun; Curtiss, Larry A.; Greeley, Jeffrey
    • The Journal of Physical Chemistry C, Vol. 115, Issue 47, p. 23625-23633
    • DOI: 10.1021/jp206796h

    A Conceptual DFT Approach for the Evaluation and Interpretation of Redox Potentials
    journal, October 2007

    • Moens, Jan; Geerlings, Paul; Roos, Goedele
    • Chemistry - A European Journal, Vol. 13, Issue 29
    • DOI: 10.1002/chem.200601896

    The Lithium/Air Battery: Still an Emerging System or a Practical Reality?
    journal, December 2014

    • Grande, Lorenzo; Paillard, Elie; Hassoun, Jusef
    • Advanced Materials, Vol. 27, Issue 5
    • DOI: 10.1002/adma.201403064

    A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
    journal, January 1996

    • Abraham, K. M.; Jiang, Z.
    • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
    • DOI: 10.1149/1.1836378

    Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries
    journal, June 2012

    • Bryantsev, Vyacheslav S.; Faglioni, Francesco
    • The Journal of Physical Chemistry A, Vol. 116, Issue 26
    • DOI: 10.1021/jp301537w

    A lithium–oxygen battery with a long cycle life in an air-like atmosphere
    journal, March 2018

    • Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram
    • Nature, Vol. 555, Issue 7697
    • DOI: 10.1038/nature25984

    Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds
    journal, October 2013

    • Guerard, Jennifer J.; Arey, J. Samuel
    • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
    • DOI: 10.1021/ct4004433

    Atomistic Modeling of the Charge Process in Lithium/Air Batteries
    journal, November 2015

    • Dabrowski, Tatjana; Ciacchi, Lucio Colombi
    • The Journal of Physical Chemistry C, Vol. 119, Issue 46
    • DOI: 10.1021/acs.jpcc.5b09002

    Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
    journal, February 2012

    • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
    • Journal of the American Chemical Society, Vol. 134, Issue 6
    • DOI: 10.1021/ja2111543

    Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes
    journal, April 2013

    • Borodin, Oleg; Behl, Wishvender; Jow, T. Richard
    • The Journal of Physical Chemistry C, Vol. 117, Issue 17
    • DOI: 10.1021/jp400527c

    Influence of Hydrocarbon and CO 2 on the Reversibility of Li–O 2 Chemistry Using In Situ Ambient Pressure X-ray Photoelectron Spectroscopy
    journal, December 2013

    • Lu, Yi-Chun; Crumlin, Ethan J.; Carney, Thomas J.
    • The Journal of Physical Chemistry C, Vol. 117, Issue 49
    • DOI: 10.1021/jp409453s

    Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
    journal, April 2017


    Review—Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air Battery Performance
    journal, January 2015

    • Lu, Jun; Lau, Kah Chun; Sun, Yang-Kook
    • Journal of The Electrochemical Society, Vol. 162, Issue 14
    • DOI: 10.1149/2.0061514jes

    Theoretical evidence for low kinetic overpotentials in Li-O 2 electrochemistry
    journal, January 2013

    • Hummelshøj, J. S.; Luntz, A. C.; Nørskov, J. K.
    • The Journal of Chemical Physics, Vol. 138, Issue 3
    • DOI: 10.1063/1.4773242

    A Reversible and Higher-Rate Li-O2 Battery
    journal, July 2012


    Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
    journal, December 2011

    • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
    • The Journal of Physical Chemistry C, Vol. 115, Issue 51
    • DOI: 10.1021/jp2087412

    Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery
    journal, February 2010

    • Hummelshøj, J. S.; Blomqvist, J.; Datta, S.
    • The Journal of Chemical Physics, Vol. 132, Issue 7
    • DOI: 10.1063/1.3298994

    Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
    journal, May 2009

    • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
    • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
    • DOI: 10.1021/jp810292n