skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 26, 2020

Title: A spark‐based big data analysis framework for real‐time sentiment prediction on streaming data

Authors:
ORCiD logo [1]
  1. Department of Software Engineering, Faculty of TechnologyManisa Celal Bayar University Manisa Turkey
Publication Date:
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
OSTI Identifier:
1529994
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Software, Practice and Experience
Additional Journal Information:
Journal Name: Software, Practice and Experience Journal Volume: 49 Journal Issue: 9; Journal ID: ISSN 0038-0644
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Kılınç, Deniz. A spark‐based big data analysis framework for real‐time sentiment prediction on streaming data. United Kingdom: N. p., 2019. Web. doi:10.1002/spe.2724.
Kılınç, Deniz. A spark‐based big data analysis framework for real‐time sentiment prediction on streaming data. United Kingdom. doi:10.1002/spe.2724.
Kılınç, Deniz. Thu . "A spark‐based big data analysis framework for real‐time sentiment prediction on streaming data". United Kingdom. doi:10.1002/spe.2724.
@article{osti_1529994,
title = {A spark‐based big data analysis framework for real‐time sentiment prediction on streaming data},
author = {Kılınç, Deniz},
abstractNote = {},
doi = {10.1002/spe.2724},
journal = {Software, Practice and Experience},
number = 9,
volume = 49,
place = {United Kingdom},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 26, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Big Data Stream Analytics for Near Real-Time Sentiment Analysis
journal, January 2015

  • Cheng, Otto K. M.; Lau, Raymond
  • Journal of Computer and Communications, Vol. 03, Issue 05
  • DOI: 10.4236/jcc.2015.35024

Preparation of Improved Turkish DataSet for Sentiment Analysis in Social Media
journal, January 2017


TTC-3600: A new benchmark dataset for Turkish text categorization
journal, December 2015

  • Kılınç, Deniz; Özçift, Akın; Bozyigit, Fatma
  • Journal of Information Science, Vol. 43, Issue 2
  • DOI: 10.1177/0165551515620551

Sentiment Analysis and Opinion Mining
journal, May 2012


Big data analytics on Apache Spark
journal, October 2016

  • Salloum, Salman; Dautov, Ruslan; Chen, Xiaojun
  • International Journal of Data Science and Analytics, Vol. 1, Issue 3-4
  • DOI: 10.1007/s41060-016-0027-9

Statistical Features-Based Real-Time Detection of Drifted Twitter Spam
journal, April 2017

  • Chen, Chao; Wang, Yu; Zhang, Jun
  • IEEE Transactions on Information Forensics and Security, Vol. 12, Issue 4
  • DOI: 10.1109/TIFS.2016.2621888

Applying spark based machine learning model on streaming big data for health status prediction
journal, January 2018


A survey on platforms for big data analytics
journal, October 2014


Spammers Are Becoming "Smarter" on Twitter
journal, March 2016


A comparison study on active learning integrated ensemble approaches in sentiment analysis
journal, January 2017


Uncovering social network Sybils in the wild
journal, February 2014

  • Yang, Zhi; Wilson, Christo; Wang, Xiao
  • ACM Transactions on Knowledge Discovery from Data, Vol. 8, Issue 1
  • DOI: 10.1145/2556609

Clash of the titans: MapReduce vs. Spark for large scale data analytics
journal, September 2015

  • Shi, Juwei; Qiu, Yunjie; Minhas, Umar Farooq
  • Proceedings of the VLDB Endowment, Vol. 8, Issue 13
  • DOI: 10.14778/2831360.2831365

Term-weighting approaches in automatic text retrieval
journal, January 1988