skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration

Abstract

Consumption of methane by aerobic and anaerobic microbes governs the atmospheric level of this powerful greenhouse gas. Whereas a biochemical understanding of aerobic methanotrophy is well developed, a mechanistic understanding of anaerobic methanotrophy has been prevented by the unavailability of pure cultures. Here we report a biochemical investigation of Methanosarcina acetivorans, a methane-producing species capable of anaerobic methanotrophic growth dependent on reduction of Fe(III). Our findings support a pathway anchored by Fe(III)-dependent mechanisms for energy conservation driving endergonic reactions that are key to methanotrophic growth. The pathway is remarkably similar to pathways hypothesized for uncultured anaerobic methanotrophic archaea. The results contribute to an improved understanding of the methane cycle that is paramount to understanding human interventions influencing Earth’s climate. Finally, the pathway enables advanced development and optimization of biotechnologies converting methane to value-added products through metabolic engineering of M. acetivorans.

Authors:
 [1]; ORCiD logo [2];  [2];  [1]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept of Biochemistry and Molecular Biology
  2. Pennsylvania State Univ., University Park, PA (United States). Dept of Civil and Environmental Engineering
Publication Date:
Research Org.:
Pennsylvania State Univ, University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1529924
Grant/Contract Number:  
FG02-95ER20198
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS

Citation Formats

Yan, Zhen, Joshi, Prachi, Gorski, Christopher A., and Ferry, James G. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04097-9.
Yan, Zhen, Joshi, Prachi, Gorski, Christopher A., & Ferry, James G. A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. United States. doi:10.1038/s41467-018-04097-9.
Yan, Zhen, Joshi, Prachi, Gorski, Christopher A., and Ferry, James G. Tue . "A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration". United States. doi:10.1038/s41467-018-04097-9. https://www.osti.gov/servlets/purl/1529924.
@article{osti_1529924,
title = {A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration},
author = {Yan, Zhen and Joshi, Prachi and Gorski, Christopher A. and Ferry, James G.},
abstractNote = {Consumption of methane by aerobic and anaerobic microbes governs the atmospheric level of this powerful greenhouse gas. Whereas a biochemical understanding of aerobic methanotrophy is well developed, a mechanistic understanding of anaerobic methanotrophy has been prevented by the unavailability of pure cultures. Here we report a biochemical investigation of Methanosarcina acetivorans, a methane-producing species capable of anaerobic methanotrophic growth dependent on reduction of Fe(III). Our findings support a pathway anchored by Fe(III)-dependent mechanisms for energy conservation driving endergonic reactions that are key to methanotrophic growth. The pathway is remarkably similar to pathways hypothesized for uncultured anaerobic methanotrophic archaea. The results contribute to an improved understanding of the methane cycle that is paramount to understanding human interventions influencing Earth’s climate. Finally, the pathway enables advanced development and optimization of biotechnologies converting methane to value-added products through metabolic engineering of M. acetivorans.},
doi = {10.1038/s41467-018-04097-9},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Methane oxidation by anaerobic archaea for conversion to liquid fuels
journal, November 2014

  • Mueller, Thomas J.; Grisewood, Matthew J.; Nazem-Bokaee, Hadi
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 3
  • DOI: 10.1007/s10295-014-1548-7

Industrial biomanufacturing: The future of chemical production
journal, January 2017

  • Clomburg, James M.; Crumbley, Anna M.; Gonzalez, Ramon
  • Science, Vol. 355, Issue 6320
  • DOI: 10.1126/science.aag0804

Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans
journal, July 2012

  • Arbing, M. A.; Chan, S.; Shin, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 29
  • DOI: 10.1073/pnas.1120595109

Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
journal, February 2016


Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals
journal, March 2013

  • White, G. F.; Shi, Z.; Shi, L.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 16
  • DOI: 10.1073/pnas.1220074110

Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina
journal, January 2007

  • Moran, James J.; House, Christopher H.; Thomas, B.
  • Journal of Geophysical Research, Vol. 112, Issue G2
  • DOI: 10.1029/2006JG000268

Manganese- and Iron-Dependent Marine Methane Oxidation
journal, July 2009


Growth of acetotrophic, methane-producing bacteria in a pH auxostat
journal, July 1984

  • Sowers, Kevin R.; Nelson, Michael J.; Ferry, James G.
  • Current Microbiology, Vol. 11, Issue 4
  • DOI: 10.1007/BF01567165

Humic substances as electron acceptors for microbial respiration
journal, August 1996

  • Lovley, Derek R.; Coates, John D.; Blunt-Harris, Elizabeth L.
  • Nature, Vol. 382, Issue 6590
  • DOI: 10.1038/382445a0

The Membrane-Bound Electron Transport System of Methanosarcina Species
journal, February 2004


Archaea catalyze iron-dependent anaerobic oxidation of methane
journal, October 2016

  • Ettwig, Katharina F.; Zhu, Baoli; Speth, Daan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 45
  • DOI: 10.1073/pnas.1609534113

Proteome of Methanosarcina a cetivorans Part II:  Comparison of Protein Levels in Acetate- and Methanol-Grown Cells
journal, February 2005

  • Li, Qingbo; Li, Lingyun; Rejtar, Tomas
  • Journal of Proteome Research, Vol. 4, Issue 1
  • DOI: 10.1021/pr049831k

Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens
journal, June 2014

  • Yamada, Chihaya; Kato, Souichiro; Kimura, Satoshi
  • FEMS Microbiology Ecology, Vol. 89, Issue 3
  • DOI: 10.1111/1574-6941.12365

Reverse Methanogenesis and Respiration in Methanotrophic Archaea
journal, January 2017

  • Timmers, Peer H. A.; Welte, Cornelia U.; Koehorst, Jasper J.
  • Archaea, Vol. 2017
  • DOI: 10.1155/2017/1654237

A colorimetric method for determining low concentrations of mercaptans
journal, April 1958


N5-methyl-tetrahydromethanopterin:coenzyme M methyltransferase of Methanosarcina strain Gö1 is an Na(+)-translocating membrane protein.
journal, December 1992


Autotrophic carbon fixation in archaea
journal, May 2010

  • Berg, Ivan A.; Kockelkorn, Daniel; Ramos-Vera, W. Hugo
  • Nature Reviews Microbiology, Vol. 8, Issue 6, p. 447-460
  • DOI: 10.1038/nrmicro2365

Single cell activity reveals direct electron transfer in methanotrophic consortia
journal, September 2015

  • McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.
  • Nature, Vol. 526, Issue 7574
  • DOI: 10.1038/nature15512

Electron transport in acetate-grown Methanosarcina acetivorans
journal, January 2011


A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea
journal, December 2015


Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation
journal, January 2012

  • Schlegel, K.; Leone, V.; Faraldo-Gomez, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 3
  • DOI: 10.1073/pnas.1115796109

Electricity from methane by reversing methanogenesis
journal, May 2017

  • McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15419

Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics
journal, September 2004


An unconventional pathway for reduction of CO2 to methane in CO-grown Methanosarcina acetivorans revealed by proteomics
journal, November 2006

  • Lessner, D. J.; Li, L.; Li, Q.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 47
  • DOI: 10.1073/pnas.0608833103

How to Make a Living by Exhaling Methane
journal, October 2010


Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans
journal, January 2016

  • Nazem-Bokaee, Hadi; Gopalakrishnan, Saratram; Ferry, James G.
  • Microbial Cell Factories, Vol. 15, Issue 1
  • DOI: 10.1186/s12934-015-0404-4

Shewanella secretes flavins that mediate extracellular electron transfer
journal, March 2008

  • Marsili, E.; Baron, D. B.; Shikhare, I. D.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 10
  • DOI: 10.1073/pnas.0710525105

Anaerobic Oxidation of Methane: Progress with an Unknown Process
journal, October 2009


Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1
journal, January 2012


Oceanic Methane Biogeochemistry
journal, February 2007


MrpA Functions in Energy Conversion during Acetate-Dependent Growth of Methanosarcina acetivorans
journal, July 2013

  • Jasso-Chavez, R.; Apolinario, E. E.; Sowers, K. R.
  • Journal of Bacteriology, Vol. 195, Issue 17
  • DOI: 10.1128/JB.00581-13

Methane and nitrous oxide emissions from the ocean: A reassessment using basin-wide observations in the Atlantic
journal, January 2009

  • Rhee, T. S.; Kettle, A. J.; Andreae, M. O.
  • Journal of Geophysical Research, Vol. 114, Issue D12
  • DOI: 10.1029/2008JD011662

Methanogenesis by Methanosarcina acetivorans involves two structurally and functionally distinct classes of heterodisulfide reductase
journal, February 2010


Characterization of a CO: heterodisulfide oxidoreductase system from acetate-grown Methanosarcina thermophila.
journal, November 1994


A new diet for methane oxidizers
journal, February 2016


Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage
journal, July 2013

  • Haroon, Mohamed F.; Hu, Shihu; Shi, Ying
  • Nature, Vol. 500, Issue 7464
  • DOI: 10.1038/nature12375

Online δ 13 C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio mass spectrometry : Online δ
journal, November 2006

  • Heuer, Verena; Elvert, Marcus; Tille, Stefanie
  • Limnology and Oceanography: Methods, Vol. 4, Issue 10
  • DOI: 10.4319/lom.2006.4.346

Quantitative Proteomic and Microarray Analysis of the Archaeon M ethanosarcina acetivorans Grown with Acetate versus Methanol
journal, February 2007

  • Li, Lingyun; Li, Qingbo; Rohlin, Lars
  • Journal of Proteome Research, Vol. 6, Issue 2
  • DOI: 10.1021/pr060383l

The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane
journal, June 2010

  • Scheller, Silvan; Goenrich, Meike; Boecher, Reinhard
  • Nature, Vol. 465, Issue 7298
  • DOI: 10.1038/nature09015

Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens
journal, July 2014

  • Welte, Cornelia; Deppenmeier, Uwe
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 7
  • DOI: 10.1016/j.bbabio.2013.12.002

Trace methane oxidation studied in several Euryarchaeota under diverse conditions
journal, January 2005

  • Moran, James J.; House, Christopher H.; Freeman, Katherine H.
  • Archaea, Vol. 1, Issue 5
  • DOI: 10.1155/2005/650670

Electron Transport in the Pathway of Acetate Conversion to Methane in the Marine Archaeon Methanosarcina acetivorans
journal, December 2005


Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton- translocating redox system in methanogenic bacteria.
journal, December 1990

  • Deppenmeier, U.; Blaut, M.; Mahlmann, A.
  • Proceedings of the National Academy of Sciences, Vol. 87, Issue 23
  • DOI: 10.1073/pnas.87.23.9449

Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex
journal, November 2012

  • Schlegel, Katharina; Welte, Cornelia; Deppenmeier, Uwe
  • FEBS Journal, Vol. 279, Issue 24
  • DOI: 10.1111/febs.12031

Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
journal, October 2015

  • Wegener, Gunter; Krukenberg, Viola; Riedel, Dietmar
  • Nature, Vol. 526, Issue 7574
  • DOI: 10.1038/nature15733

Humic Substances as a Mediator for Microbially Catalyzed Metal Reduction
journal, May 1998


Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea
journal, January 2017


Reversing methanogenesis to capture methane for liquid biofuel precursors
journal, January 2016

  • Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti
  • Microbial Cell Factories, Vol. 15, Issue 1
  • DOI: 10.1186/s12934-015-0397-z

Metabolic engineering of Methanosarcina acetivorans for lactate production from methane : Anaerobic Lactate Production From Methane
journal, November 2016

  • McAnulty, Michael J.; Poosarla, Venkata Giridhar; Li, Jine
  • Biotechnology and Bioengineering, Vol. 114, Issue 4
  • DOI: 10.1002/bit.26208

Physiology, Biochemistry, and Applications of F 420 - and F o -Dependent Redox Reactions
journal, April 2016

  • Greening, Chris; Ahmed, F. Hafna; Mohamed, A. Elaaf
  • Microbiology and Molecular Biology Reviews, Vol. 80, Issue 2
  • DOI: 10.1128/MMBR.00070-15

Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways
journal, December 2013


Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans
journal, March 2017

  • Nayak, Dipti D.; Metcalf, William W.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1618596114

    Works referencing / citing this record:

    Evidence for microbial iron reduction in the methanic sediments of the oligotrophic southeastern Mediterranean continental shelf
    journal, January 2019