skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accurate quantum chemical energies for 133 000 organic molecules

Abstract

The energies of the 133 000 molecules in the GDB-9 database have been calculated at the G4MP2 level of theory and then were used to calculate their enthalpies of formation.

Authors:
ORCiD logo [1];  [2];  [2];  [2]
  1. Department of Mechanical Engineering, University of Louisville, Louisville, USA, Materials Science Division
  2. Materials Science Division, Argonne National Laboratory, Argonne, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1529705
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 10 Journal Issue: 31; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Narayanan, Badri, Redfern, Paul C., Assary, Rajeev S., and Curtiss, Larry A. Accurate quantum chemical energies for 133 000 organic molecules. United Kingdom: N. p., 2019. Web. doi:10.1039/C9SC02834J.
Narayanan, Badri, Redfern, Paul C., Assary, Rajeev S., & Curtiss, Larry A. Accurate quantum chemical energies for 133 000 organic molecules. United Kingdom. doi:10.1039/C9SC02834J.
Narayanan, Badri, Redfern, Paul C., Assary, Rajeev S., and Curtiss, Larry A. Wed . "Accurate quantum chemical energies for 133 000 organic molecules". United Kingdom. doi:10.1039/C9SC02834J.
@article{osti_1529705,
title = {Accurate quantum chemical energies for 133 000 organic molecules},
author = {Narayanan, Badri and Redfern, Paul C. and Assary, Rajeev S. and Curtiss, Larry A.},
abstractNote = {The energies of the 133 000 molecules in the GDB-9 database have been calculated at the G4MP2 level of theory and then were used to calculate their enthalpies of formation.},
doi = {10.1039/C9SC02834J},
journal = {Chemical Science},
number = 31,
volume = 10,
place = {United Kingdom},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C9SC02834J

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Assessment of Gaussian-3 and Density Functional Theories for Enthalpies of Formation of C 1 −C 16 Alkanes
journal, June 2000

  • Redfern, Paul C.; Zapol, Peter; Curtiss, Larry A.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 24
  • DOI: 10.1021/jp994429s

A Comparison of Model Chemistries
journal, November 1995

  • Ochterski, Joseph W.; Petersson, George A.; Wiberg, Kenneth B.
  • Journal of the American Chemical Society, Vol. 117, Issue 45
  • DOI: 10.1021/ja00150a030

Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory
journal, August 1999

  • Martin, Jan M. L.; de Oliveira, Glênisson
  • The Journal of Chemical Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.479454

W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range
journal, March 2004

  • Boese, A. Daniel; Oren, Mikhal; Atasoylu, Onur
  • The Journal of Chemical Physics, Vol. 120, Issue 9
  • DOI: 10.1063/1.1638736

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
journal, April 2017


HEAT: High accuracy extrapolated ab initio thermochemistry
journal, December 2004

  • Tajti, Attila; Szalay, Péter G.; Császár, Attila G.
  • The Journal of Chemical Physics, Vol. 121, Issue 23
  • DOI: 10.1063/1.1811608

Explicitly correlated W n theory: W1-F12 and W2-F12
journal, March 2012

  • Karton, Amir; Martin, Jan M. L.
  • The Journal of Chemical Physics, Vol. 136, Issue 12
  • DOI: 10.1063/1.3697678

Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem
journal, November 2012

  • Kruse, Holger; Goerigk, Lars; Grimme, Stefan
  • The Journal of Organic Chemistry, Vol. 77, Issue 23
  • DOI: 10.1021/jo302156p

Towards the intrinsic error of the correlation consistent Composite Approach (ccCA)
journal, April 2009

  • DeYonker, Nathan J.; Wilson, Brent R.; Pierpont, Aaron W.
  • Molecular Physics, Vol. 107, Issue 8-12
  • DOI: 10.1080/00268970902744359

A complete basis set model chemistry. V. Extensions to six or more heavy atoms
journal, February 1996

  • Ochterski, Joseph W.; Petersson, G. A.; Montgomery, J. A.
  • The Journal of Chemical Physics, Vol. 104, Issue 7
  • DOI: 10.1063/1.470985

Accurate thermochemistry for larger molecules: Gaussian-2 theory with bond separation energies
journal, April 1997

  • Raghavachari, Krishnan; Stefanov, Boris B.; Curtiss, Larry A.
  • The Journal of Chemical Physics, Vol. 106, Issue 16
  • DOI: 10.1063/1.473659

W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
journal, July 2011


Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules
journal, January 2008

  • Tirado-Rives, Julian; Jorgensen, William L.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 2
  • DOI: 10.1021/ct700248k

W3X: A Cost-Effective Post-CCSD(T) Composite Procedure
journal, October 2013

  • Chan, Bun; Radom, Leo
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
  • DOI: 10.1021/ct4005323

Explicitly Correlated Methods within the ccCA Methodology
journal, February 2013

  • Mahler, Andrew; Wilson, Angela K.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 3
  • DOI: 10.1021/ct300956e

Gaussian-4 theory using reduced order perturbation theory
journal, September 2007

  • Curtiss, Larry A.; Redfern, Paul C.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 127, Issue 12
  • DOI: 10.1063/1.2770701

Gaussian-4 theory
journal, February 2007

  • Curtiss, Larry A.; Redfern, Paul C.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 126, Issue 8
  • DOI: 10.1063/1.2436888

A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
journal, January 2017

  • Goerigk, Lars; Hansen, Andreas; Bauer, Christoph
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 48
  • DOI: 10.1039/C7CP04913G

Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies
journal, September 2005

  • Curtiss, Larry A.; Redfern, Paul C.; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 123, Issue 12
  • DOI: 10.1063/1.2039080

Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds
journal, June 1991

  • Curtiss, Larry A.; Raghavachari, Krishnan; Trucks, Gary W.
  • The Journal of Chemical Physics, Vol. 94, Issue 11
  • DOI: 10.1063/1.460205

MC-QCISD:  Multi-Coefficient Correlation Method Based on Quadratic Configuration Interaction with Single and Double Excitations
journal, July 2000

  • Fast, Patton L.; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 26
  • DOI: 10.1021/jp000408i

The correlation consistent composite approach (cc CA ): An alternative to the Gaussian-n methods
journal, March 2006

  • DeYonker, Nathan J.; Cundari, Thomas R.; Wilson, Angela K.
  • The Journal of Chemical Physics, Vol. 124, Issue 11
  • DOI: 10.1063/1.2173988

Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics
journal, January 2005

  • Zhao, Yan; Lynch, Benjamin J.; Truhlar, Donald G.
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 1
  • DOI: 10.1039/b416937a

Extrapolation of high-order correlation energies: the WMS model
journal, January 2018

  • Zhao, Yan; Xia, Lixue; Liao, Xiaobin
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 43
  • DOI: 10.1039/C8CP04973D

A new mixing of Hartree–Fock and local density‐functional theories
journal, January 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 2
  • DOI: 10.1063/1.464304

W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions
journal, October 2006

  • Karton, Amir; Rabinovich, Elena; Martin, Jan M. L.
  • The Journal of Chemical Physics, Vol. 125, Issue 14
  • DOI: 10.1063/1.2348881

Robust and Affordable Multicoefficient Methods for Thermochemistry and Thermochemical Kinetics:  The MCCM/3 Suite and SAC/3
journal, May 2003

  • Lynch, Benjamin J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 19
  • DOI: 10.1021/jp0221993

A complete basis set model chemistry. VI. Use of density functional geometries and frequencies
journal, February 1999

  • Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.
  • The Journal of Chemical Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.477924

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Gaussian-3 (G3) theory for molecules containing first and second-row atoms
journal, November 1998

  • Curtiss, Larry A.; Raghavachari, Krishnan; Redfern, Paul C.
  • The Journal of Chemical Physics, Vol. 109, Issue 18
  • DOI: 10.1063/1.477422

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b