skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure

Abstract

Active surface acoustic wave components have the potential to transform RF front ends by consolidating functionalities that currently occur across multiple chip technologies, leading to reduced insertion loss from converting back and forth between acoustic and electronic domains in addition to improved size and power efficiency. This letter reflects a significant advance in these active devices with a compact, high-gain, and low-power leaky surface acoustic wave amplifier based on the acoustoelectric effect. Devices use an acoustically thin semi-insulating InGaAs surface film on a YX lithium niobate substrate to achieve exceptionally high acoustoelectric interaction strength via an epitaxial In 0.53Ga 0.47As(P)/InP quaternary layer structure and wafer-scale bonding. Here, we demonstrate 1.9 dB of gain per acoustic wavelength and power consumption of 90 mW for 30 dB of electronic gain. Despite the strong intrinsic leaky propagation loss, 5 dB of terminal gain is obtained for a semiconductor that is only 338 μm long due to state-of-the-art heterogenous integration and an improved material platform.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1529154
Alternate Identifier(s):
OSTI ID: 1529412
Report Number(s):
SAND-2019-4833J
Journal ID: ISSN 0003-6951; 675132
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 114; Journal Issue: 25; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Hackett, L., Siddiqui, A., Dominguez, D., Douglas, J. K., Tauke-Pedretti, A., Friedmann, T., Peake, G., Arterburn, S., and Eichenfield, M. High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure. United States: N. p., 2019. Web. doi:10.1063/1.5108724.
Hackett, L., Siddiqui, A., Dominguez, D., Douglas, J. K., Tauke-Pedretti, A., Friedmann, T., Peake, G., Arterburn, S., & Eichenfield, M. High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure. United States. doi:10.1063/1.5108724.
Hackett, L., Siddiqui, A., Dominguez, D., Douglas, J. K., Tauke-Pedretti, A., Friedmann, T., Peake, G., Arterburn, S., and Eichenfield, M. Tue . "High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure". United States. doi:10.1063/1.5108724. https://www.osti.gov/servlets/purl/1529154.
@article{osti_1529154,
title = {High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure},
author = {Hackett, L. and Siddiqui, A. and Dominguez, D. and Douglas, J. K. and Tauke-Pedretti, A. and Friedmann, T. and Peake, G. and Arterburn, S. and Eichenfield, M.},
abstractNote = {Active surface acoustic wave components have the potential to transform RF front ends by consolidating functionalities that currently occur across multiple chip technologies, leading to reduced insertion loss from converting back and forth between acoustic and electronic domains in addition to improved size and power efficiency. This letter reflects a significant advance in these active devices with a compact, high-gain, and low-power leaky surface acoustic wave amplifier based on the acoustoelectric effect. Devices use an acoustically thin semi-insulating InGaAs surface film on a YX lithium niobate substrate to achieve exceptionally high acoustoelectric interaction strength via an epitaxial In0.53Ga0.47As(P)/InP quaternary layer structure and wafer-scale bonding. Here, we demonstrate 1.9 dB of gain per acoustic wavelength and power consumption of 90 mW for 30 dB of electronic gain. Despite the strong intrinsic leaky propagation loss, 5 dB of terminal gain is obtained for a semiconductor that is only 338 μm long due to state-of-the-art heterogenous integration and an improved material platform.},
doi = {10.1063/1.5108724},
journal = {Applied Physics Letters},
number = 25,
volume = 114,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

FIG. 1 FIG. 1: (a) A cross-sectional schematic of the device, which consists of a 100 nm thick InGaAs layer with DC contacts integrated in a YX LiNbO3 delay line. (b) Schematic and (c) atomic force microscope scan of the initial epitaxial stack before bonding to the LiNbO3 and further processing. (d)more » Microscope image of the fabricated device with (e) an image of the interdigital transducers and DC contact. (f) Camera image of the 3 inch LiNbO3 wafer after fabricating arrays of devices. The bonded 2 inch InP wafer is indicated by the dashed blue line. The expected amplifier response with (g) no applied bias and (h) a drift voltage sufficient for gain.« less

Save / Share:

Works referenced in this record:

Surface Wave Delay Line Amplifiers
journal, November 1969

  • Lakin, K. M.; Shaw, H. J.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 17, Issue 11
  • DOI: 10.1109/TMTT.1969.1127081

Suppression of the leaky SAW attenuation with heavy mechanical loading
journal, March 1998

  • Koskela, J.; Plessky, V. P.; Salomaa, M. M.
  • IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, Issue 2
  • DOI: 10.1109/58.660154

Observation of the Acoustoelectric Effect
journal, June 1957


Ultra-Wideband Surface Acoustic Wave Devices Using Cu-Grating/Rotated-YX-LiNbO 3 -Substrate Structure
journal, May 2004

  • Hashimoto, Ken-ya; Asano, Hiroki; Omori, Tatsuya
  • Japanese Journal of Applied Physics, Vol. 43, Issue 5B
  • DOI: 10.1143/JJAP.43.3063

Monolithic acoustoelectric amplifier using pseudosurface waves
journal, May 1974

  • Henaff, Jeannine; Feldmann, Michel; Le Contellec, Michel
  • Applied Physics Letters, Vol. 24, Issue 9
  • DOI: 10.1063/1.1655255

Surface Waves in Piezoelectrics
journal, June 1969

  • Ingebrigtsen, K. A.
  • Journal of Applied Physics, Vol. 40, Issue 7
  • DOI: 10.1063/1.1658060

Bleustein-wave amplification in photoconducting CdS
journal, January 1972

  • Cambon, G.; Fournier, C.; Rouzeyre, M.
  • Electronics Letters, Vol. 8, Issue 3
  • DOI: 10.1049/el:19720044

Band Structure Engineering at Heterojunction Interfaces via the Piezotronic Effect
journal, May 2012

  • Shi, Jian; Starr, Matthew B.; Wang, Xudong
  • Advanced Materials, Vol. 24, Issue 34
  • DOI: 10.1002/adma.201104386

Generation of Rayleigh and bulk waves by interdigital transducers on y-cut z-propagating lithium niobate
journal, January 1973

  • Reilly, N. H. C.; Milsom, R. F.; Redwood, M.
  • Electronics Letters, Vol. 9, Issue 18
  • DOI: 10.1049/el:19730307

Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors
journal, September 2017


Simple theory of acoustic amplification
journal, July 1971


Giant acoustoelectric effect in GaAs/LiNbO3 hybrids
journal, October 1998

  • Rotter, M.; Wixforth, A.; Ruile, W.
  • Applied Physics Letters, Vol. 73, Issue 15
  • DOI: 10.1063/1.122400

Fundamental Theory of Piezotronics
journal, May 2011


Strong Acoustoelectric Effect in CdS
journal, December 1962


Linear and Nonlinear Attenuation of Acoustic Surface Waves in a Piezoelectric Coated with a Semiconducting Film
journal, February 1970

  • Ingebrigtsen, K. A.
  • Journal of Applied Physics, Vol. 41, Issue 2
  • DOI: 10.1063/1.1658696

Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas
journal, January 2015

  • Shao, Lei; Pipe, Kevin P.
  • Applied Physics Letters, Vol. 106, Issue 2
  • DOI: 10.1063/1.4905836

New family of bulk-acoustic-wave devices employing interdigital transducers
journal, January 1977


A Single–Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and ${+}$90 dBm IIP2
journal, March 2009

  • Kaczman, Daniel; Shah, Manish; Alam, Mohammed
  • IEEE Journal of Solid-State Circuits, Vol. 44, Issue 3
  • DOI: 10.1109/JSSC.2009.2013762

High Temperature Stable Acoustic Surface Wave Substrates of SiO 2 /LiNbO 3 Structure with Super High Coupling
journal, May 2002

  • Yamanouchi, Kazuhiko; Ishii, Toru
  • Japanese Journal of Applied Physics, Vol. 41, Issue Part 1, No. 5B
  • DOI: 10.1143/JJAP.41.3480

The carrier mobilities in Ga0.47In0.53as grown by organo-mettalic CVD and liquid-phase epitaxy
journal, July 1981


Non-Reciprocal Acoustic Transmission in a GaN Delay Line Using the Acoustoelectric Effect
journal, June 2017


Acoustoelectric Effect in n -Type Germanium
journal, April 1959

  • Weinreich, Gabriel; Sanders, T. M.; White, Harry G.
  • Physical Review, Vol. 114, Issue 1
  • DOI: 10.1103/PhysRev.114.33

Surface acoustic wave amplification by direct current-voltage supplied to graphene film
journal, January 2015

  • Insepov, Z.; Emelin, E.; Kononenko, O.
  • Applied Physics Letters, Vol. 106, Issue 2
  • DOI: 10.1063/1.4906033

Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review
journal, June 2017

  • Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
  • Semiconductor Science and Technology, Vol. 32, Issue 7
  • DOI: 10.1088/1361-6641/aa6778

Bulk waves radiated from an interdigital metallic transducer deposited on an anisotropic substrate
journal, January 1987


Amplification of Acoustic Surface Waves with Adjacent Semiconductor and Piezoelectric Crystals
journal, November 1968

  • Collins, J. H.; Lakin, K. M.; Quate, C. F.
  • Applied Physics Letters, Vol. 13, Issue 9
  • DOI: 10.1063/1.1652628

Propagation and Amplification of Rayleigh Waves and Piezoelectric Leaky Surface Waves in LiNbO 3
journal, March 1972

  • Yamanouchi, Kazuhiko; Shibayama, Kimio
  • Journal of Applied Physics, Vol. 43, Issue 3
  • DOI: 10.1063/1.1661294

PIEZOELECTRIC LEAKY SURFACE WAVE IN LiNbO 3
journal, September 1970

  • Takayanagi, A.; Yamanouchi, K.; Shibayama, K.
  • Applied Physics Letters, Vol. 17, Issue 5
  • DOI: 10.1063/1.1653375

100 MHz surface acoustoelectric amplifier exhibiting stable terminal gain with DC drift field
journal, January 1969

  • Lakin, K. M.; Collins, J. H.; Hagon, P. J.
  • Proceedings of the IEEE, Vol. 57, Issue 4
  • DOI: 10.1109/PROC.1969.7064

Propagation and Amplification of Rayleigh Waves and Piezoelectric Leaky Surface Waves in the Structure of InSb Thin Films on LiNbO 3
journal, September 1975

  • Yamanouchi, K.; Abe, K.; Shibayama, K.
  • IEEE Transactions on Sonics and Ultrasonics, Vol. 22, Issue 5
  • DOI: 10.1109/T-SU.1975.30820

The Traveling-Wave Tube as Amplifier at Microwaves
journal, February 1947


The InSb on a piezoelectric Rayleigh wave amplifier
journal, July 1974


Monolithic Acoustic Surface‐Wave Amplifier
journal, April 1971

  • Coldren, L. A.; Kino, G. S.
  • Applied Physics Letters, Vol. 18, Issue 8
  • DOI: 10.1063/1.1653677

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.