DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling inter-particle magnetic correlations in magnetite nanoparticle assemblies using x-ray magnetic scattering data

Abstract

Magnetic nanoparticles are increasingly used in nanotechnologies and biomedical applications, such as drug targeting, MRI, bio-separation. Magnetite (Fe3O4) nanoparticles stand to be effective in these roles due to the non-toxic nature of magnetite and its ease of manufacture. To be more effective in these applications, a greater understanding of the magnetic behavior of a collection of magnetite nanoparticles is needed. This research seeks to discover the local magnetic ordering of ensembles of magnetite nanoparticles occurring under various external fields. To complete this study, we use x-ray resonant magnetic scattering (XRMS). Here we discuss the modeling of the magnetic scattering data using a one-dimensional chain of nanoparticles with a mix of ferromagnetic, anti-ferromagnetic, and random orders. By fitting the model to the experimental data, we extracted information about the magnetic correlations in the nanoparticle assembly.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [3];  [1];  [1]
  1. Brigham Young Univ., Provo, UT (United States). Dept. of Physics and Astronomy
  2. Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1528776
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 9; Journal Issue: 3; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Rackham, Johnathon, Newbold, Brittni, Kotter, Steve, Smith, Dallin, Griner, Dalton, Harrison, Roger, Reid, Alex H., Transtrum, Mark, and Chesnel, Karine. Modeling inter-particle magnetic correlations in magnetite nanoparticle assemblies using x-ray magnetic scattering data. United States: N. p., 2019. Web. doi:10.1063/1.5080155.
Rackham, Johnathon, Newbold, Brittni, Kotter, Steve, Smith, Dallin, Griner, Dalton, Harrison, Roger, Reid, Alex H., Transtrum, Mark, & Chesnel, Karine. Modeling inter-particle magnetic correlations in magnetite nanoparticle assemblies using x-ray magnetic scattering data. United States. https://doi.org/10.1063/1.5080155
Rackham, Johnathon, Newbold, Brittni, Kotter, Steve, Smith, Dallin, Griner, Dalton, Harrison, Roger, Reid, Alex H., Transtrum, Mark, and Chesnel, Karine. Tue . "Modeling inter-particle magnetic correlations in magnetite nanoparticle assemblies using x-ray magnetic scattering data". United States. https://doi.org/10.1063/1.5080155. https://www.osti.gov/servlets/purl/1528776.
@article{osti_1528776,
title = {Modeling inter-particle magnetic correlations in magnetite nanoparticle assemblies using x-ray magnetic scattering data},
author = {Rackham, Johnathon and Newbold, Brittni and Kotter, Steve and Smith, Dallin and Griner, Dalton and Harrison, Roger and Reid, Alex H. and Transtrum, Mark and Chesnel, Karine},
abstractNote = {Magnetic nanoparticles are increasingly used in nanotechnologies and biomedical applications, such as drug targeting, MRI, bio-separation. Magnetite (Fe3O4) nanoparticles stand to be effective in these roles due to the non-toxic nature of magnetite and its ease of manufacture. To be more effective in these applications, a greater understanding of the magnetic behavior of a collection of magnetite nanoparticles is needed. This research seeks to discover the local magnetic ordering of ensembles of magnetite nanoparticles occurring under various external fields. To complete this study, we use x-ray resonant magnetic scattering (XRMS). Here we discuss the modeling of the magnetic scattering data using a one-dimensional chain of nanoparticles with a mix of ferromagnetic, anti-ferromagnetic, and random orders. By fitting the model to the experimental data, we extracted information about the magnetic correlations in the nanoparticle assembly.},
doi = {10.1063/1.5080155},
journal = {AIP Advances},
number = 3,
volume = 9,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

An Algorithm for Least-Squares Estimation of Nonlinear Parameters
journal, June 1963

  • Marquardt, Donald W.
  • Journal of the Society for Industrial and Applied Mathematics, Vol. 11, Issue 2
  • DOI: 10.1137/0111030

Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage
journal, January 2009

  • Frey, Natalie A.; Peng, Sheng; Cheng, Kai
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b815548h

Probing complex materials with coherent soft X-rays
journal, May 2008


Unraveling Nanoscale Magnetic Ordering in Fe3O4 Nanoparticle Assemblies via X-rays
journal, September 2018


Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications
journal, August 2009

  • Gao, Jinhao; Gu, Hongwei; Xu, Bing
  • Accounts of Chemical Research, Vol. 42, Issue 8
  • DOI: 10.1021/ar9000026

Interparticle magnetic correlations in dense Co nanoparticle assemblies
journal, January 2005


Magnetic nanoparticle design for medical diagnosis and therapy
journal, January 2004

  • Mornet, St�phane; Vasseur, S�bastien; Grasset, Fabien
  • Journal of Materials Chemistry, Vol. 14, Issue 14
  • DOI: 10.1039/b402025a

Medical application of functionalized magnetic nanoparticles
journal, July 2005

  • Ito, Akira; Shinkai, Masashige; Honda, Hiroyuki
  • Journal of Bioscience and Bioengineering, Vol. 100, Issue 1
  • DOI: 10.1263/jbb.100.1

A method for the solution of certain non-linear problems in least squares
journal, January 1944

  • Levenberg, Kenneth
  • Quarterly of Applied Mathematics, Vol. 2, Issue 2
  • DOI: 10.1090/qam/10666

Particle size effects on the magnetic behaviour of 5 to 11 nm Fe 3 O 4 nanoparticles coated with oleic acid
journal, June 2014


Magnetic nanoparticles and their applications in medicine
journal, August 2006


The structure of magnetite
journal, April 1981

  • Fleet, M. E.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 37, Issue 4
  • DOI: 10.1107/s0567740881004597

Soft-x-ray Faraday rotation at Fe L 2 , 3 edges
journal, April 1995


Orbital and spin moments of 5 to 11 nm Fe 3 O 4 nanoparticles measured via x-ray magnetic circular dichroism
journal, May 2014

  • Cai, Y. P.; Chesnel, K.; Trevino, M.
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4869277

Chemical Design of Nanoparticle Probes for High‐Performance Magnetic Resonance Imaging
journal, June 2008

  • Jun, Young‐wook; Lee, Jae‐Hyun; Cheon, Jinwoo
  • Angewandte Chemie International Edition, Vol. 47, Issue 28
  • DOI: 10.1002/anie.200701674

Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures
journal, August 1939


Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
text, January 2010


Datasets of seed mucilage traits for Arabidopsis thaliana natural accessions with atypical outer mucilage
journal, March 2021


Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
text, January 2010

  • Kryka, K. L.; Booth, Ryan A.; Hogg, Charles R.
  • Carnegie Mellon University
  • DOI: 10.1184/r1/6506570

Unraveling nanoscale magnetic ordering in Fe3O4 nanoparticle assemblies via x-rays
text, January 2020


Works referencing / citing this record:

Size-dependent spatial magnetization profile of manganese-zinc ferrite M n 0.2 Z n 0.2 F e 2.6 O 4 nanoparticles
journal, October 2019