DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photocarrier Transfer across Monolayer MoS2 –MoSe2 Lateral Heterojunctions

Abstract

In-plane heterojuctions formed from two monolayer semiconductors represent the finest control of electrons in condensed matter and have attracted significant interest. Various device studies have shown the effectiveness of such structures to control electronic processes, illustrating their potentials for electronic and optoelectronic applications. However, information about the physical mechanisms of charge carrier transfer across the junctions is still rare, mainly due to the lack of adequate experimental techniques. Here we show that transient absorption measurements with high spatial and temporal resolution can be used to directly monitor such transfer processes. We studied MoS2–MoSe2 in-plane heterostructures fabricated by chemical vapor deposition and lithographic patterning followed by laser-generated vapor sulfurization. Transient absorption measurements in reflection geometry revealed evidence of exciton transfer from MoS2 to MoSe2. By comparing the experimental data with a simulation, we extracted an exciton transfer velocity of 104 m s–1. These results provide valuable information for understanding and controlling in-plane carrier transfer in two-dimensional lateral heterostructures for their electronic and optoelectronic applications.

Authors:
 [1]; ORCiD logo [2];  [1]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [4]; ORCiD logo [1]
  1. Univ. of Kansas, Lawrence, KS (United States). Dept. of Physics and Astronomy
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Auburn Univ., AL (United States). Electrical and Computer Engineering
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Graduate Education
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  5. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1528725
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; van der Waals interface; transition metal dichalcogenide; electron transfer; transient absorption; two-dimensional material

Citation Formats

Bellus, Matthew Z., Mahjouri-Samani, Masoud, Lane, Samuel D., Oyedele, Akinola D., Li, Xufan, Puretzky, Alexander A., Geohegan, David, Xiao, Kai, and Zhao, Hui. Photocarrier Transfer across Monolayer MoS2 –MoSe2 Lateral Heterojunctions. United States: N. p., 2018. Web. doi:10.1021/acsnano.8b02843.
Bellus, Matthew Z., Mahjouri-Samani, Masoud, Lane, Samuel D., Oyedele, Akinola D., Li, Xufan, Puretzky, Alexander A., Geohegan, David, Xiao, Kai, & Zhao, Hui. Photocarrier Transfer across Monolayer MoS2 –MoSe2 Lateral Heterojunctions. United States. https://doi.org/10.1021/acsnano.8b02843
Bellus, Matthew Z., Mahjouri-Samani, Masoud, Lane, Samuel D., Oyedele, Akinola D., Li, Xufan, Puretzky, Alexander A., Geohegan, David, Xiao, Kai, and Zhao, Hui. Fri . "Photocarrier Transfer across Monolayer MoS2 –MoSe2 Lateral Heterojunctions". United States. https://doi.org/10.1021/acsnano.8b02843. https://www.osti.gov/servlets/purl/1528725.
@article{osti_1528725,
title = {Photocarrier Transfer across Monolayer MoS2 –MoSe2 Lateral Heterojunctions},
author = {Bellus, Matthew Z. and Mahjouri-Samani, Masoud and Lane, Samuel D. and Oyedele, Akinola D. and Li, Xufan and Puretzky, Alexander A. and Geohegan, David and Xiao, Kai and Zhao, Hui},
abstractNote = {In-plane heterojuctions formed from two monolayer semiconductors represent the finest control of electrons in condensed matter and have attracted significant interest. Various device studies have shown the effectiveness of such structures to control electronic processes, illustrating their potentials for electronic and optoelectronic applications. However, information about the physical mechanisms of charge carrier transfer across the junctions is still rare, mainly due to the lack of adequate experimental techniques. Here we show that transient absorption measurements with high spatial and temporal resolution can be used to directly monitor such transfer processes. We studied MoS2–MoSe2 in-plane heterostructures fabricated by chemical vapor deposition and lithographic patterning followed by laser-generated vapor sulfurization. Transient absorption measurements in reflection geometry revealed evidence of exciton transfer from MoS2 to MoSe2. By comparing the experimental data with a simulation, we extracted an exciton transfer velocity of 104 m s–1. These results provide valuable information for understanding and controlling in-plane carrier transfer in two-dimensional lateral heterostructures for their electronic and optoelectronic applications.},
doi = {10.1021/acsnano.8b02843},
journal = {ACS Nano},
number = 7,
volume = 12,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The super materials that could trump graphene
journal, June 2015


New directions in science and technology: two-dimensional crystals
journal, July 2011


Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides
journal, May 2012


Valley polarization in MoS2 monolayers by optical pumping
journal, June 2012

  • Zeng, Hualing; Dai, Junfeng; Yao, Wang
  • Nature Nanotechnology, Vol. 7, Issue 8
  • DOI: 10.1038/nnano.2012.95

Control of valley polarization in monolayer MoS2 by optical helicity
journal, June 2012


Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Tightly Bound Excitons in Monolayer WSe 2
journal, July 2014


Second harmonic microscopy of monolayer MoS 2
journal, April 2013


Observation of intense second harmonic generation from MoS 2 atomic crystals
journal, May 2013

  • Malard, Leandro M.; Alencar, Thonimar V.; Barboza, Ana Paula M.
  • Physical Review B, Vol. 87, Issue 20
  • DOI: 10.1103/PhysRevB.87.201401

Probing Symmetry Properties of Few-Layer MoS 2 and h-BN by Optical Second-Harmonic Generation
journal, June 2013

  • Li, Yilei; Rao, Yi; Mak, Kin Fai
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401561r

Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Integrated Circuits Based on Bilayer MoS2 Transistors
journal, January 2012

  • Wang, Han; Yu, Lili; Lee, Yi-Hsien
  • Nano Letters, Vol. 12, Issue 9, p. 4674-4680
  • DOI: 10.1021/nl302015v

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide
journal, March 2014

  • Baugher, Britton W. H.; Churchill, Hugh O. H.; Yang, Yafang
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.25

Electrically Switchable Chiral Light-Emitting Transistor
journal, April 2014


Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
journal, August 2014

  • Hong, Xiaoping; Kim, Jonghwan; Shi, Su-Fei
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.167

Ultrafast Charge Separation and Indirect Exciton Formation in a MoS 2 –MoSe 2 van der Waals Heterostructure
journal, November 2014

  • Ceballos, Frank; Bellus, Matthew Z.; Chiu, Hsin-Ying
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505736z

Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures
journal, November 2014

  • He, Jiaqi; Kumar, Nardeep; Bellus, Matthew Z.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6622

Ultrafast charge transfer in MoS 2 /WSe 2 p–n Heterojunction
journal, May 2016


Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors
journal, February 2017


Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions
journal, September 2014

  • Duan, Xidong; Wang, Chen; Shaw, Jonathan C.
  • Nature Nanotechnology, Vol. 9, Issue 12, p. 1024-1030
  • DOI: 10.1038/nnano.2014.222

Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers
journal, December 2014

  • Zhang, Xin-Quan; Lin, Chin-Hao; Tseng, Yu-Wen
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl503744f

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Diffusion-Mediated Synthesis of MoS 2 /WS 2 Lateral Heterostructures
journal, August 2016


Lateral Built-In Potential of Monolayer MoS 2 -WS 2 In-Plane Heterostructures by a Shortcut Growth Strategy
journal, September 2015


Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors
journal, August 2014

  • Huang, Chunming; Wu, Sanfeng; Sanchez, Ana M.
  • Nature Materials, Vol. 13, Issue 12, p. 1096-1101
  • DOI: 10.1038/nmat4064

Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface
journal, July 2015


Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors
journal, July 2015

  • Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8749

Lateral Epitaxy of Atomically Sharp WSe 2 /WS 2 Heterojunctions on Silicon Dioxide Substrates
journal, October 2016


Tuning Carrier Confinement in the MoS 2 /WS 2 Lateral Heterostructure
journal, April 2015

  • Kang, Jun; Sahin, Hasan; Peeters, François M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 17
  • DOI: 10.1021/acs.jpcc.5b00814

Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures
journal, June 2016

  • Guo, Yuzheng; Robertson, John
  • Applied Physics Letters, Vol. 108, Issue 23
  • DOI: 10.1063/1.4953169

Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures
journal, February 2017


Electronic Properties of MoS 2 –WS 2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy
journal, September 2015


Ultrafast Laser Spectroscopy of Two-Dimensional Materials Beyond Graphene
journal, December 2016


Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide
journal, July 2012


Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures
journal, November 1985


Band-gap renormalization in semiconductor quantum wells containing carriers
journal, August 1985


Direct determination of monolayer MoS 2 and WSe 2 exciton binding energies on insulating and metallic substrates
journal, January 2018


Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry
journal, November 2014

  • Liu, Hsiang-Lin; Shen, Chih-Chiang; Su, Sheng-Han
  • Applied Physics Letters, Vol. 105, Issue 20
  • DOI: 10.1063/1.4901836

Exciton-exciton annihilation in MoSe 2 monolayers
journal, March 2014


Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide
journal, September 2014

  • Sun, Dezheng; Rao, Yi; Reider, Georg A.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl5021975

Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2
journal, July 2015

  • Poellmann, C.; Steinleitner, P.; Leierseder, U.
  • Nature Materials, Vol. 14, Issue 9
  • DOI: 10.1038/nmat4356

Ultrafast probes of electron–hole transitions between two atomic layers
journal, May 2018


Exciton formation in monolayer transition metal dichalcogenides
journal, January 2016

  • Ceballos, Frank; Cui, Qiannan; Bellus, Matthew Z.
  • Nanoscale, Vol. 8, Issue 22
  • DOI: 10.1039/C6NR02516A

Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe 2
journal, February 2017


Separating electrons and holes by monolayer increments in van der Waals heterostructures
journal, September 2017


Exciton diffusion in monolayer and bulk MoSe 2
journal, January 2014

  • Kumar, Nardeep; Cui, Qiannan; Ceballos, Frank
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/C3NR06863C

About Supramolecular Assemblies of π-Conjugated Systems
journal, April 2005

  • Hoeben, Freek J. M.; Jonkheijm, Pascal; Meijer, E. W.
  • Chemical Reviews, Vol. 105, Issue 4
  • DOI: 10.1021/cr030070z

A Theory of Sensitized Luminescence in Solids
journal, May 1953

  • Dexter, D. L.
  • The Journal of Chemical Physics, Vol. 21, Issue 5, p. 836-850
  • DOI: 10.1063/1.1699044

Evidence for Fast Interlayer Energy Transfer in MoSe 2 /WS 2 Heterostructures
journal, June 2016