skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Particle analogs of electrons in colloidal crystals

Abstract

A versatile method for the design of colloidal crystals involves the use of DNA as a particle-directing ligand. With such systems, DNA-nanoparticle conjugates are considered programmable atom equivalents (PAEs), and design rules have been devised to engineer crystallization outcomes. This work shows that when reduced in size and DNA grafting density, PAEs behave as electron equivalents (EEs), roaming through and stabilizing the lattices defined by larger PAEs, as electrons do in metals in the classical picture. This discovery defines a new property of colloidal crystals—metallicity—that is characterized by the extent of EE delocalization and diffusion. As the number of strands increases or the temperature decreases, the EEs localize, which is structurally reminiscent of a metal-insulator transition. Colloidal crystal metallicity, therefore, provides new routes to metallic, intermetallic, and compound phases.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1528673
Grant/Contract Number:  
SC0000989; AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 364 Journal Issue: 6446; Journal ID: ISSN 0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

Girard, Martin, Wang, Shunzhi, Du, Jingshan S., Das, Anindita, Huang, Ziyin, Dravid, Vinayak P., Lee, Byeongdu, Mirkin, Chad A., and Olvera de la Cruz, Monica. Particle analogs of electrons in colloidal crystals. United States: N. p., 2019. Web. doi:10.1126/science.aaw8237.
Girard, Martin, Wang, Shunzhi, Du, Jingshan S., Das, Anindita, Huang, Ziyin, Dravid, Vinayak P., Lee, Byeongdu, Mirkin, Chad A., & Olvera de la Cruz, Monica. Particle analogs of electrons in colloidal crystals. United States. doi:10.1126/science.aaw8237.
Girard, Martin, Wang, Shunzhi, Du, Jingshan S., Das, Anindita, Huang, Ziyin, Dravid, Vinayak P., Lee, Byeongdu, Mirkin, Chad A., and Olvera de la Cruz, Monica. Thu . "Particle analogs of electrons in colloidal crystals". United States. doi:10.1126/science.aaw8237.
@article{osti_1528673,
title = {Particle analogs of electrons in colloidal crystals},
author = {Girard, Martin and Wang, Shunzhi and Du, Jingshan S. and Das, Anindita and Huang, Ziyin and Dravid, Vinayak P. and Lee, Byeongdu and Mirkin, Chad A. and Olvera de la Cruz, Monica},
abstractNote = {A versatile method for the design of colloidal crystals involves the use of DNA as a particle-directing ligand. With such systems, DNA-nanoparticle conjugates are considered programmable atom equivalents (PAEs), and design rules have been devised to engineer crystallization outcomes. This work shows that when reduced in size and DNA grafting density, PAEs behave as electron equivalents (EEs), roaming through and stabilizing the lattices defined by larger PAEs, as electrons do in metals in the classical picture. This discovery defines a new property of colloidal crystals—metallicity—that is characterized by the extent of EE delocalization and diffusion. As the number of strands increases or the temperature decreases, the EEs localize, which is structurally reminiscent of a metal-insulator transition. Colloidal crystal metallicity, therefore, provides new routes to metallic, intermetallic, and compound phases.},
doi = {10.1126/science.aaw8237},
journal = {Science},
number = 6446,
volume = 364,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1126/science.aaw8237

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Crystallization of DNA-coated colloids
journal, June 2015

  • Wang, Yu; Wang, Yufeng; Zheng, Xiaolong
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8253

A Mathematical Theory of Communication
journal, July 1948


Automated tilt series alignment and tomographic reconstruction in IMOD
journal, February 2017


Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Nanoparticle Superlattices as Quasi-Frank-Kasper Phases
journal, September 2017


Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes
journal, December 2006

  • Hurst, Sarah J.; Lytton-Jean, Abigail K. R.; Mirkin, Chad A.
  • Analytical Chemistry, Vol. 78, Issue 24
  • DOI: 10.1021/ac0613582

Giant Supramolecular Liquid Crystal Lattice
journal, February 2003


Non-equilibrium anisotropic colloidal single crystal growth with DNA
journal, November 2018

  • Seo, Soyoung E.; Girard, Martin; Olvera de la Cruz, Monica
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-06982-9

Electrostatic Self-Assembly of Binary Nanoparticle Crystals with a Diamond-Like Lattice
journal, February 2006

  • Kalsin, A. M.; Fialkowski, M.; Paszewski, M.
  • Science, Vol. 312, Issue 5772, p. 420-424
  • DOI: 10.1126/science.1125124

A counter-example to Kelvin's conjecture on minimal surfaces
journal, February 1994


Stable Frank–Kasper phases of self-assembled, soft matter spheres
journal, September 2018

  • Reddy, Abhiram; Buckley, Michael B.; Arora, Akash
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 41
  • DOI: 10.1073/pnas.1809655115

Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations
journal, April 2012

  • Li, Ting I. N. G.; Sknepnek, Rastko; Macfarlane, Robert J.
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300679e

Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
journal, August 2007

  • Dabov, Kostadin; Foi, Alessandro; Katkovnik, Vladimir
  • IEEE Transactions on Image Processing, Vol. 16, Issue 8
  • DOI: 10.1109/TIP.2007.901238

DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
journal, August 2014

  • de Nijs, Bart; Dussi, Simone; Smallenburg, Frank
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4072

Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization
journal, September 2016

  • O’Brien, Matthew N.; Girard, Martin; Lin, Hai-Xin
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 38
  • DOI: 10.1073/pnas.1611808113

Directed self-assembly of a colloidal kagome lattice
journal, January 2011

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Nature, Vol. 469, Issue 7330
  • DOI: 10.1038/nature09713

Superionics: crystal structures and conduction processes
journal, June 2004


Maximizing Entropy by Minimizing Area:  Towards a New Principle of Self-Organization
journal, October 2001

  • Ziherl, P.; Kamien, Randall D.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 42
  • DOI: 10.1021/jp010944q

Discovery of a Frank-Kasper   Phase in Sphere-Forming Block Copolymer Melts
journal, October 2010


The Structural Characterization of Oligonucleotide-Modified Gold Nanoparticle Networks Formed by DNA Hybridization
journal, August 2004

  • Park, So-Jung; Lazarides, Anne A.; Storhoff, James J.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 33
  • DOI: 10.1021/jp040242b

A DNA-based method for rationally assembling nanoparticles into macroscopic materials
journal, August 1996

  • Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.
  • Nature, Vol. 382, Issue 6592, p. 607-609
  • DOI: 10.1038/382607a0

DNA-mediated engineering of multicomponent enzyme crystals
journal, March 2015

  • Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 15
  • DOI: 10.1073/pnas.1503533112

Synthesis and Characterization of Au 102 ( p -MBA) 44 Nanoparticles
journal, March 2011

  • Levi-Kalisman, Yael; Jadzinsky, Pablo D.; Kalisman, Nir
  • Journal of the American Chemical Society, Vol. 133, Issue 9
  • DOI: 10.1021/ja109131w

DNA-mediated nanoparticle crystallization into Wulff polyhedra
journal, November 2013

  • Auyeung, Evelyn; Li, Ting I. N. G.; Senesi, Andrew J.
  • Nature, Vol. 505, Issue 7481
  • DOI: 10.1038/nature12739

Diamond family of nanoparticle superlattices
journal, February 2016


TrackMate: An open and extensible platform for single-particle tracking
journal, February 2017


Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization
journal, April 2001


Ionic colloidal crystals of oppositely charged particles
journal, September 2005

  • Leunissen, Mirjam E.; Christova, Christina G.; Hynninen, Antti-Pekka
  • Nature, Vol. 437, Issue 7056
  • DOI: 10.1038/nature03946

Colloids with valence and specific directional bonding
journal, October 2012


Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O
journal, September 1999

  • Zuo, J. M.; Kim, M.; O'Keeffe, M.
  • Nature, Vol. 401, Issue 6748
  • DOI: 10.1038/43403

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

Clathrate colloidal crystals
journal, March 2017


Colloidal Interactions and Self-Assembly Using DNA Hybridization
journal, February 2005


Selective assemblies of giant tetrahedra via precisely controlled positional interactions
journal, April 2015


Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy
journal, June 2015


Assembling Materials with DNA as the Guide
journal, September 2008


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Nonadditivity of nanoparticle interactions
journal, October 2015


Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization
journal, May 2011


Thermally Active Hybridization Drives the Crystallization of DNA-Functionalized Nanoparticles
journal, May 2013

  • Li, Ting I. N. G.; Sknepnek, Rastko; Olvera de la Cruz, Monica
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja312644h

Small Angle X-ray Scattering for Nanoparticle Research
journal, April 2016


DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Theory and simulation of DNA-coated colloids: a guide for rational design
journal, January 2016

  • Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 9
  • DOI: 10.1039/C5CP06981E

Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions
journal, January 2017

  • McMillan, Janet R.; Brodin, Jeffrey D.; Millan, Jaime A.
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b11893

Automated electron microscope tomography using robust prediction of specimen movements
journal, October 2005


Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials
journal, August 2016