DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters

Abstract

In many superconducting transition-edge sensor (TES) microcalorimeters, the measured electrical noise exceeds theoretical estimates based on a thermal model of a single body thermally connected to a heat bath. In this work, we report on noise and complex impedance measurements of a range of designs of TESs made with a Mo/Au bilayer. We have fitted the measured data using a two-body model, where the x-ray absorber and the TES are connected by an internal thermal conductance Gae. We find that the so-called excess noise measured in these devices is consistent with the noise generated from the internal thermal fluctuations between the x-ray absorber and the TES. Our fitted parameters are consistent with the origin of Gae being from the finite thermal conductance of the TES itself. These results suggest that even in these relatively low resistance Mo/Au TESs, the internal thermal conductance of the TES may add significant additional noise and could account for all the measured excess noise. Furthermore, we find that around regions of the superconducting transition with rapidly changing derivative of resistance with respect to temperature, an additional noise mechanism may dominate. These observations may lead to a greater understanding of TES devices and allow the designmore » of TES microcalorimeters with improved performance.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [1];  [2];  [3];  [4];  [5]; ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1];  [2];  [2]; ORCiD logo [1];  [1];  [3]
  1. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Univ. of Maryland Baltimore County (UMBC), Baltimore, MD (United States)
  2. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  3. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); KBRwyle, Lexington Park, MD (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Sigma Space Corp., Lanham, MD (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1527293
Alternate Identifier(s):
OSTI ID: 1508437
Report Number(s):
LLNL-JRNL-764481
Journal ID: ISSN 0021-8979; 954491
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 125; Journal Issue: 16; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Wakeham, N. A., Adams, J. S., Bandler, S. R., Beaumont, S., Chervenak, J. A., Datesman, A. M., Eckart, M. E., Finkbeiner, F. M., Hummatov, R., Kelley, R. L., Kilbourne, C. A., Miniussi, A. R., Porter, F. S., Sadleir, J. E., Sakai, K., Smith, S. J., and Wassell, E. J. Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters. United States: N. p., 2019. Web. doi:10.1063/1.5086045.
Wakeham, N. A., Adams, J. S., Bandler, S. R., Beaumont, S., Chervenak, J. A., Datesman, A. M., Eckart, M. E., Finkbeiner, F. M., Hummatov, R., Kelley, R. L., Kilbourne, C. A., Miniussi, A. R., Porter, F. S., Sadleir, J. E., Sakai, K., Smith, S. J., & Wassell, E. J. Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters. United States. https://doi.org/10.1063/1.5086045
Wakeham, N. A., Adams, J. S., Bandler, S. R., Beaumont, S., Chervenak, J. A., Datesman, A. M., Eckart, M. E., Finkbeiner, F. M., Hummatov, R., Kelley, R. L., Kilbourne, C. A., Miniussi, A. R., Porter, F. S., Sadleir, J. E., Sakai, K., Smith, S. J., and Wassell, E. J. Tue . "Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters". United States. https://doi.org/10.1063/1.5086045. https://www.osti.gov/servlets/purl/1527293.
@article{osti_1527293,
title = {Thermal fluctuation noise in Mo/Au superconducting transition-edge sensor microcalorimeters},
author = {Wakeham, N. A. and Adams, J. S. and Bandler, S. R. and Beaumont, S. and Chervenak, J. A. and Datesman, A. M. and Eckart, M. E. and Finkbeiner, F. M. and Hummatov, R. and Kelley, R. L. and Kilbourne, C. A. and Miniussi, A. R. and Porter, F. S. and Sadleir, J. E. and Sakai, K. and Smith, S. J. and Wassell, E. J.},
abstractNote = {In many superconducting transition-edge sensor (TES) microcalorimeters, the measured electrical noise exceeds theoretical estimates based on a thermal model of a single body thermally connected to a heat bath. In this work, we report on noise and complex impedance measurements of a range of designs of TESs made with a Mo/Au bilayer. We have fitted the measured data using a two-body model, where the x-ray absorber and the TES are connected by an internal thermal conductance Gae. We find that the so-called excess noise measured in these devices is consistent with the noise generated from the internal thermal fluctuations between the x-ray absorber and the TES. Our fitted parameters are consistent with the origin of Gae being from the finite thermal conductance of the TES itself. These results suggest that even in these relatively low resistance Mo/Au TESs, the internal thermal conductance of the TES may add significant additional noise and could account for all the measured excess noise. Furthermore, we find that around regions of the superconducting transition with rapidly changing derivative of resistance with respect to temperature, an additional noise mechanism may dominate. These observations may lead to a greater understanding of TES devices and allow the design of TES microcalorimeters with improved performance.},
doi = {10.1063/1.5086045},
journal = {Journal of Applied Physics},
number = 16,
volume = 125,
place = {United States},
year = {Tue Apr 23 00:00:00 EDT 2019},
month = {Tue Apr 23 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Large-Area Microcalorimeter Detectors for Ultra-High-Resolution X-Ray and Gamma-Ray Spectroscopy
journal, August 2009

  • Bacrania, M. K.; Hoover, A. S.; Karpius, P. J.
  • IEEE Transactions on Nuclear Science, Vol. 56, Issue 4
  • DOI: 10.1109/TNS.2009.2022754

X-ray microanalysis with microcalorimeters
journal, April 2006

  • Isaila, C.; Feilitzsch, F. v.; Höhne, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 559, Issue 2
  • DOI: 10.1016/j.nima.2005.12.121

A reassessment of absolute energies of the x-ray L lines of lanthanide metals
journal, June 2017


High-Resolution Kaonic-Atom X-ray Spectroscopy with Transition-Edge-Sensor Microcalorimeters
journal, February 2014

  • Okada, S.; Bennett, D. A.; Doriese, W. B.
  • Journal of Low Temperature Physics, Vol. 176, Issue 5-6
  • DOI: 10.1007/s10909-014-1137-1

The Athena X-ray Integral Field Unit (X-IFU)
conference, August 2016

  • Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2232432

Lynx Mission concept status
conference, September 2017

  • Gaskin, Jessica A.; Allured, Ryan; Baysinger, Michael F.
  • UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX
  • DOI: 10.1117/12.2273911

Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry
journal, March 2004

  • Ullom, J. N.; Doriese, W. B.; Hilton, G. C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 520, Issue 1-3
  • DOI: 10.1016/j.nima.2003.11.260

Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors
journal, August 2013

  • Smith, Stephen J.; Adams, Joseph S.; Bailey, Catherine N.
  • Journal of Applied Physics, Vol. 114, Issue 7
  • DOI: 10.1063/1.4818917

High‐resolution, energy‐dispersive microcalorimeter spectrometer for X‐ray microanalysis
journal, December 1997


Effects of Normal Metal Features on Superconducting Transition-Edge Sensors
journal, April 2018

  • Wakeham, N. A.; Adams, J. S.; Bandler, S. R.
  • Journal of Low Temperature Physics, Vol. 193, Issue 3-4
  • DOI: 10.1007/s10909-018-1898-z

Dependence of Excess Noise on the Partial Derivatives of Resistance in Superconducting Transition Edge Sensors
conference, January 2009

  • Jethava, Nikhil; Ullom, Joel N.; Irwin, Kent D.
  • THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13, AIP Conference Proceedings
  • DOI: 10.1063/1.3292343

Complex microcalorimeter models and their application to position-sensitive detectors
journal, June 2006

  • Figueroa-Feliciano, Enectali
  • Journal of Applied Physics, Vol. 99, Issue 11
  • DOI: 10.1063/1.2191449

Thermodynamics of nonlinear bolometers near equilibrium
journal, April 2006

  • Irwin, K. D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 559, Issue 2
  • DOI: 10.1016/j.nima.2005.12.115

Phase‐slip shot noise contribution to excess noise in superconducting bolometers
journal, May 1983

  • Knoedler, C. M.
  • Journal of Applied Physics, Vol. 54, Issue 5
  • DOI: 10.1063/1.332306

Phase-slip lines as a resistance mechanism in transition-edge sensors
journal, January 2014

  • Bennett, Douglas A.; Schmidt, Daniel R.; Swetz, Daniel S.
  • Applied Physics Letters, Vol. 104, Issue 4
  • DOI: 10.1063/1.4863664

Fundamental Noise Processes in TES Devices
journal, June 2011


Performance of a microcalorimeter with a superconducting transition edge thermometer
journal, April 2000

  • Hoevers, H. F. C.; Bento, A. C.; Bruijn, M. P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 444, Issue 1-2
  • DOI: 10.1016/S0168-9002(99)01356-X

Analysis of Impedance and Noise Data of an X-Ray Transition-Edge Sensor Using Complex Thermal Models
journal, January 2012

  • Palosaari, M. R. J.; Kinnunen, K. M.; Ridder, M. L.
  • Journal of Low Temperature Physics, Vol. 167, Issue 3-4
  • DOI: 10.1007/s10909-012-0471-4

Characterization of a High-Performance Ti/Au TES Microcalorimeter with a Central Cu Absorber
journal, January 2008

  • Takei, Y.; Gottardi, L.; Hoevers, H. F. C.
  • Journal of Low Temperature Physics, Vol. 151, Issue 1-2
  • DOI: 10.1007/s10909-007-9621-5

Normal metal-superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors
journal, August 2012

  • Kinnunen, K. M.; Palosaari, M. R. J.; Maasilta, I. J.
  • Journal of Applied Physics, Vol. 112, Issue 3
  • DOI: 10.1063/1.4745908

Performance of an X-ray Microcalorimeter with a 240 μm Absorber and a 50 μm TES Bilayer
journal, May 2018

  • Miniussi, Antoine R.; Adams, Joseph S.; Bandler, Simon R.
  • Journal of Low Temperature Physics, Vol. 193, Issue 3-4
  • DOI: 10.1007/s10909-018-1974-4

Impedance measurements and modeling of a transition-edge-sensor calorimeter
journal, May 2004

  • Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.
  • Review of Scientific Instruments, Vol. 75, Issue 5
  • DOI: 10.1063/1.1711144

Performance Characteristics of a New Low-Temperature Bolometer
journal, January 1959

  • Boyle, W. S.; Rodgers, K. F.
  • Journal of the Optical Society of America, Vol. 49, Issue 1
  • DOI: 10.1364/JOSA.49.000066

Experimental Results and Modeling of Low-Heat-Capacity TES Microcalorimeters for Soft-X-ray Spectroscopy
conference, January 2009

  • Eckart, Megan E.; Adams, Joseph S.; Bandler, Simon R.
  • THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13, AIP Conference Proceedings
  • DOI: 10.1063/1.3292370

Proximity effect in TES structures
conference, January 2009

  • Kozorezov, A.; Golubov, A.; Martin, D.
  • THE THIRTEENTH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE DETECTORS—LTD13, AIP Conference Proceedings
  • DOI: 10.1063/1.3292333

Thermal Conductance Engineering for High-Speed TES Microcalorimeters
journal, January 2016

  • Hays-Wehle, J. P.; Schmidt, D. R.; Ullom, J. N.
  • Journal of Low Temperature Physics, Vol. 184, Issue 1-2
  • DOI: 10.1007/s10909-015-1416-5

Hot-electron effects in metals
journal, March 1994


Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
journal, January 2010


Josephson Effects in Frequency-Domain Multiplexed TES Microcalorimeters and Bolometers
journal, July 2018

  • Gottardi, L.; Smith, S. J.; Kozorezov, A.
  • Journal of Low Temperature Physics, Vol. 193, Issue 3-4
  • DOI: 10.1007/s10909-018-2006-0

Study of Dissipative Losses in AC-Biased Mo/Au Bilayer Transition-Edge Sensors
journal, June 2018

  • Sakai, K.; Adams, J. S.; Bandler, S. R.
  • Journal of Low Temperature Physics, Vol. 193, Issue 3-4
  • DOI: 10.1007/s10909-018-2002-4

The ATHENA x-ray integral field unit (X-IFU)
conference, July 2018

  • Barret, Didier; den Herder, Jan-Willem; Lam Trong, Thien
  • Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
  • DOI: 10.1117/12.2312409

Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
text, January 2009


Analysis of impedance and noise data of an X-ray transition-edge sensor using complex thermal models
text, January 2011


Works referencing / citing this record:

High-Frequency Noise Peaks in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters
journal, January 2020

  • Wakeham, N. A.; Adams, J. S.; Bandler, S. R.
  • Journal of Low Temperature Physics, Vol. 200, Issue 5-6
  • DOI: 10.1007/s10909-019-02322-3