skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars

Abstract

Using the new state-of-the-art core-collapse supernova (CCSN) code FORNAX, we have simulated the three-dimensional dynamical evolution of the cores of 9-, 10-, 11-, 12-, and 13-M stars from the onset of collapse. Stars from 8 to 13 M constitute roughly 50 percent of all massive stars, so the explosive potential for this mass range is important to the overall theory of CCSNe. We find that the 9-, 10-, 11-, and 12-M⊙ models explode in 3D easily, but that the 13-M model does not. From these findings, and the fact that slightly more massive progenitors seem to explode, we suggest that there is a gap in explodability near 12 to 14 M for non-rotating progenitor stars. Factors conducive to explosion are turbulence behind the stalled shock, energy transfer due to neutrino–matter absorption and neutrino–matter scattering, many-body corrections to the neutrino–nucleon scattering rate, and the presence of a sharp silicon–oxygen interface in the progenitor. Our 3D exploding models frequently have a dipolar structure, with the two asymmetrical exploding lobes separated by a pinched waist where matter temporarily continues to accrete. This process maintains the driving neutrino luminosity, while partially shunting matter out of the way of the expandingmore » lobes, thereby modestly facilitating explosion. The morphology of all 3D explosions is characterized by multiple bubble structures with a range of low-order harmonic modes. Though much remains to be done in CCSN theory, these and other results in the literature suggest that, at least for these lower mass progenitors, supernova theory is converging on a credible solution.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1527202
Alternate Identifier(s):
OSTI ID: 1577635
Grant/Contract Number:  
AC03-76SF00098; SC0018297
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 485; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Astronomy & Astrophysics; hydrodynamics; supernovae: general

Citation Formats

Burrows, Adam, Radice, David, and Vartanyan, David. Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars. United States: N. p., 2019. Web. doi:10.1093/mnras/stz543.
Burrows, Adam, Radice, David, & Vartanyan, David. Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars. United States. doi:10.1093/mnras/stz543.
Burrows, Adam, Radice, David, and Vartanyan, David. Mon . "Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars". United States. doi:10.1093/mnras/stz543.
@article{osti_1527202,
title = {Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars},
author = {Burrows, Adam and Radice, David and Vartanyan, David},
abstractNote = {Using the new state-of-the-art core-collapse supernova (CCSN) code FORNAX, we have simulated the three-dimensional dynamical evolution of the cores of 9-, 10-, 11-, 12-, and 13-M⊙ stars from the onset of collapse. Stars from 8 to 13 M⊙ constitute roughly 50 percent of all massive stars, so the explosive potential for this mass range is important to the overall theory of CCSNe. We find that the 9-, 10-, 11-, and 12-M⊙ models explode in 3D easily, but that the 13-M⊙ model does not. From these findings, and the fact that slightly more massive progenitors seem to explode, we suggest that there is a gap in explodability near 12 to 14 M⊙ for non-rotating progenitor stars. Factors conducive to explosion are turbulence behind the stalled shock, energy transfer due to neutrino–matter absorption and neutrino–matter scattering, many-body corrections to the neutrino–nucleon scattering rate, and the presence of a sharp silicon–oxygen interface in the progenitor. Our 3D exploding models frequently have a dipolar structure, with the two asymmetrical exploding lobes separated by a pinched waist where matter temporarily continues to accrete. This process maintains the driving neutrino luminosity, while partially shunting matter out of the way of the expanding lobes, thereby modestly facilitating explosion. The morphology of all 3D explosions is characterized by multiple bubble structures with a range of low-order harmonic modes. Though much remains to be done in CCSN theory, these and other results in the literature suggest that, at least for these lower mass progenitors, supernova theory is converging on a credible solution.},
doi = {10.1093/mnras/stz543},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 485,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1093/mnras/stz543

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New Two-Dimensional Models of Supernova Explosions by the Neutrino-Heating Mechanism: Evidence for Different Instability Regimes in Collapsing Stellar Cores
journal, November 2012

  • Müller, Bernhard; Janka, Hans-Thomas; Heger, Alexander
  • The Astrophysical Journal, Vol. 761, Issue 1
  • DOI: 10.1088/0004-637X/761/1/72

Pulsar spins from an instability in the accretion shock of supernovae
journal, January 2007


Links Between the Shock Instability in Core-Collapse Supernovae and Asymmetric Accretions of Envelopes
journal, October 2016


A Detailed Comparison of Multidimensional Boltzmann Neutrino Transport Methods in Core-collapse Supernovae
journal, October 2017

  • Richers, Sherwood; Nagakura, Hiroki; Ott, Christian D.
  • The Astrophysical Journal, Vol. 847, Issue 2
  • DOI: 10.3847/1538-4357/aa8bb2

Neutrino opacities in nuclear matter
journal, October 2006


An Investigation into the Character of Pre-Explosion Core-Collapse Supernova Shock Motion
journal, October 2012

  • Burrows, Adam; Dolence, Joshua C.; Murphy, Jeremiah W.
  • The Astrophysical Journal, Vol. 759, Issue 1
  • DOI: 10.1088/0004-637X/759/1/5

Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙
journal, March 2018

  • Vartanyan, David; Burrows, Adam; Radice, David
  • Monthly Notices of the Royal Astronomical Society, Vol. 477, Issue 3
  • DOI: 10.1093/mnras/sty809

Multidimensional Radiation/Hydrodynamic Simulations of Proto–Neutron Star Convection
journal, July 2006

  • Dessart, L.; Burrows, A.; Livne, E.
  • The Astrophysical Journal, Vol. 645, Issue 1
  • DOI: 10.1086/504068

Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
journal, October 2017

  • Tews, Ingo; Lattimer, James M.; Ohnishi, Akira
  • The Astrophysical Journal, Vol. 848, Issue 2
  • DOI: 10.3847/1538-4357/aa8db9

Inside the supernova: A powerful convective engine
journal, November 1994

  • Herant, Marc; Benz, Willy; Hix, W. Raphael
  • The Astrophysical Journal, Vol. 435
  • DOI: 10.1086/174817

Neutrino-nucleon scattering in supernova matter from the virial expansion
journal, February 2017


Birth and Evolution of Isolated Radio Pulsars
journal, May 2006

  • Faucher‐Giguere, Claude‐Andre; Kaspi, Victoria M.
  • The Astrophysical Journal, Vol. 643, Issue 1
  • DOI: 10.1086/501516

A new Multi-Energy Neutrino Radiation-Hydrodynamics code in full General Relativity and its Application to the Gravitational Collapse of Massive Stars
journal, February 2016

  • Kuroda, Takami; Takiwaki, Tomoya; Kotake, Kei
  • The Astrophysical Journal Supplement Series, Vol. 222, Issue 2
  • DOI: 10.3847/0067-0049/222/2/20

Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition
journal, January 2018

  • Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias
  • The Astrophysical Journal, Vol. 852, Issue 1
  • DOI: 10.3847/1538-4357/aa9ce8

The last Minutes of Oxygen Shell Burning in a Massive star
journal, December 2016


Revival of the Stalled Core-Collapse Supernova Shock Triggered by Precollapse Asphericity in the Progenitor star
journal, October 2013


Medium modification of the charged-current neutrino opacity and its implications
journal, December 2012


Induced Rotation in Three-Dimensional Simulations of Core-Collapse Supernovae: Implications for Pulsar Spins
journal, April 2011

  • Rantsiou, Emmanouela; Burrows, Adam; Nordhaus, Jason
  • The Astrophysical Journal, Vol. 732, Issue 1
  • DOI: 10.1088/0004-637X/732/1/57

Non-radial instabilities and progenitor asphericities in core-collapse supernovae
journal, February 2015

  • Müller, B.; Janka, H. -Th.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 3
  • DOI: 10.1093/mnras/stv101

Black hole Formation in Failing Core-Collapse Supernovae
journal, March 2011


Many-body corrections to charged-current neutrino absorption rates in nuclear matter
journal, January 1999


Charged current neutrino interactions in hot and dense matter
journal, April 2017


Convection and the mechanism of type II supernovae
journal, July 1987

  • Burrows, Adam
  • The Astrophysical Journal, Vol. 318
  • DOI: 10.1086/184937

Evolution of 8-10 solar mass stars toward electron capture supernovae. II - Collapse of an O + NE + MG core
journal, November 1987

  • Nomoto, Ken'ichi
  • The Astrophysical Journal, Vol. 322
  • DOI: 10.1086/165716

Effects of correlations on neutrino opacities in nuclear matter
journal, July 1998


The Progenitor Dependence of the Pre-Explosion Neutrino Emission in Core-Collapse Supernovae
journal, December 2012


Neutrino-Driven Supernova of a Low-Mass Iron-Core Progenitor Boosted by Three-Dimensional Turbulent Convection
journal, March 2015


Should one use the Ray-By-Ray Approximation in Core-Collapse Supernova Simulations?
journal, October 2016

  • Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.
  • The Astrophysical Journal, Vol. 831, Issue 1
  • DOI: 10.3847/0004-637X/831/1/81

Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows
journal, May 2016

  • Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 461, Issue 1
  • DOI: 10.1093/mnrasl/slw105

Muon Creation in Supernova Matter Facilitates Neutrino-Driven Explosions
journal, December 2017


The evolution and explosion of massive stars
journal, November 2002


THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M PROGENITOR
journal, July 2015


Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport
journal, February 2018


Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae
journal, September 2018


Measuring the Progenitor Masses and Dense Circumstellar Material of Type II Supernovae
journal, April 2018

  • Morozova, Viktoriya; Piro, Anthony L.; Valenti, Stefano
  • The Astrophysical Journal, Vol. 858, Issue 1
  • DOI: 10.3847/1538-4357/aab9a6

Criteria for Core‐Collapse Supernova Explosions by the Neutrino Mechanism
journal, December 2008

  • Murphy, Jeremiah W.; Burrows, Adam
  • The Astrophysical Journal, Vol. 688, Issue 2
  • DOI: 10.1086/592214

Revival of a stalled supernova shock by neutrino heating
journal, August 1985

  • Bethe, H. A.; Wilson, J. R.
  • The Astrophysical Journal, Vol. 295
  • DOI: 10.1086/163343

Fornax: A Flexible Code for Multiphysics Astrophysical Simulations
journal, February 2019

  • Skinner, M. Aaron; Dolence, Joshua C.; Burrows, Adam
  • The Astrophysical Journal Supplement Series, Vol. 241, Issue 1
  • DOI: 10.3847/1538-4365/ab007f

A successful 3D core-collapse supernova explosion model
journal, September 2018

  • Vartanyan, David; Burrows, Adam; Radice, David
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2585

Shock Breakout in Core‐Collapse Supernovae and Its Neutrino Signature
journal, July 2003

  • Thompson, Todd A.; Burrows, Adam; Pinto, Philip A.
  • The Astrophysical Journal, Vol. 592, Issue 1
  • DOI: 10.1086/375701

On the Nature of Core-Collapse Supernova Explosions
journal, September 1995

  • Burrows, Adam; Hayes, John; Fryxell, Bruce A.
  • The Astrophysical Journal, Vol. 450
  • DOI: 10.1086/176188

The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M
journal, February 2018

  • Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André
  • The Astrophysical Journal, Vol. 855, Issue 1
  • DOI: 10.3847/2041-8213/aaa967

General-Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae
journal, October 2016


Stability of Standing Accretion Shocks, with an Eye toward Core‐Collapse Supernovae
journal, February 2003

  • Blondin, John M.; Mezzacappa, Anthony; DeMarino, Christine
  • The Astrophysical Journal, Vol. 584, Issue 2
  • DOI: 10.1086/345812

Presupernova structure of massive stars
journal, January 2011

  • Meakin, Casey A.; Sukhbold, Tuguldur; Arnett, W. David
  • Astrophysics and Space Science, Vol. 336, Issue 1
  • DOI: 10.1007/s10509-010-0591-8

The Three-Dimensional Evolution to core Collapse of a Massive star
journal, July 2015

  • Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David
  • The Astrophysical Journal, Vol. 808, Issue 1
  • DOI: 10.1088/2041-8205/808/1/L21

The role of Turbulence in Neutrino-Driven Core-Collapse Supernova Explosions
journal, January 2015


The Remarkable Deaths of 9–11 Solar mass Stars
journal, August 2015


Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae
journal, April 2006


Detecting the Supernova Breakout Burst in Terrestrial Neutrino Detectors
journal, February 2016


Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations
journal, December 2005


High-Resolution Three-Dimensional Simulations of Core-Collapse Supernovae in Multiple Progenitors
journal, April 2014


A High-resolution Study of Presupernova Core Structure
journal, June 2018

  • Sukhbold, Tuguldur; Woosley, S. E.; Heger, Alexander
  • The Astrophysical Journal, Vol. 860, Issue 2
  • DOI: 10.3847/1538-4357/aac2da

Instabilities and clumping in SN 1987A. I - Early evolution in two dimensions
journal, February 1991

  • Fryxell, Bruce; Arnett, David; Mueller, Ewald
  • The Astrophysical Journal, Vol. 367
  • DOI: 10.1086/169657

Sasi Activity in Three-Dimensional Neutrino-Hydrodynamics Simulations of Supernova Cores
journal, May 2013

  • Hanke, Florian; Müller, Bernhard; Wongwathanarat, Annop
  • The Astrophysical Journal, Vol. 770, Issue 1
  • DOI: 10.1088/0004-637X/770/1/66

Supernova simulations from a 3D progenitor model – Impact of perturbations and evolution of explosion properties
journal, August 2017

  • Müller, Bernhard; Melson, Tobias; Heger, Alexander
  • Monthly Notices of the Royal Astronomical Society, Vol. 472, Issue 1
  • DOI: 10.1093/mnras/stx1962

A numerical model for multigroup radiation hydrodynamics
journal, May 2011

  • Vaytet, N. M. H.; Audit, E.; Dubroca, B.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 112, Issue 8
  • DOI: 10.1016/j.jqsrt.2011.01.027

The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D
journal, August 2015

  • Müller, B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 1
  • DOI: 10.1093/mnras/stv1611

Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-Powered Explosions
journal, April 2016


Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations
journal, November 2017

  • Radice, David; Burrows, Adam; Vartanyan, David
  • The Astrophysical Journal, Vol. 850, Issue 1
  • DOI: 10.3847/1538-4357/aa92c5

Linear Growth of Spiral SASI Modes in Core‐Collapse Supernovae
journal, February 2007

  • Blondin, John M.; Shaw, Samantha
  • The Astrophysical Journal, Vol. 656, Issue 1
  • DOI: 10.1086/510614

Core-Collapse Supernova Equations of State Based on Neutron star Observations
journal, August 2013


Is Strong sasi Activity the key to Successful Neutrino-Driven Supernova Explosions?
journal, August 2012


A Theory of Supernova Explosions
journal, October 1993

  • Burrows, Adam; Goshy, John
  • The Astrophysical Journal, Vol. 416
  • DOI: 10.1086/187074

Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations
journal, July 2010


Shock–turbulence interaction in core-collapse supernovae
journal, July 2016

  • Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 4
  • DOI: 10.1093/mnras/stw1604

A generalized equation of state for hot, dense matter
journal, December 1991


Dimensional Dependence of the Hydrodynamics of Core-Collapse Supernovae
journal, February 2013


Neutrino-Driven Explosion of a 20 Solar-Mass star in Three Dimensions Enabled by Strange-Quark Contributions to Neutrino–Nucleon Scattering
journal, July 2015