DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting

Abstract

Plasmonic nanoantennas are ideal for single molecule detection since they nano-focus the light beyond diffraction and enhance the optical fields by several orders of magnitude. But delivering the molecules into these nanometric hot-spots is a real challenge. Here, we present a dynamic sensor, with label-free real-time detection capabilities, which can detect and count molecules and particles one by one in their native environment independently of their concentration. To this end, we have integrated a 35 nm gap plasmonic bowtie antenna with a 30 nm × 30 nm nanochannel. The channel runs through the antenna gap, and delivers the analyte directly into the hot spot. We show how the antenna probes into zeptoliter volumes inside the nanochannel by observing the dark field resonance shift during the filling process of a non-fluorescent liquid. Moreover, we detect and count single quantum dots, one by one, at ultra-high concentrations of up to 25 mg mL-1. The nano-focusing of light, reduces the observation volume in five orders of magnitude compared to the diffraction limited spot, beating the diffraction limit. These results prove the unique sensitivity of the device and in the future can be extended to detection of a variety of molecules for biomedical applications.

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [2]
  1. Molecular Foundry, Lawrence Berkeley National Laboratory, USA, DTU Nanotech, Technical University of Denmark
  2. Molecular Foundry, Lawrence Berkeley National Laboratory, USA
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1526649
Alternate Identifier(s):
OSTI ID: 1596678
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Lab on a chip (Print)
Additional Journal Information:
Journal Name: Lab on a chip (Print) Journal Volume: 19 Journal Issue: 14; Journal ID: ISSN 1473-0197
Publisher:
Royal Society of Chemistry
Country of Publication:
France
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Fernandez-Cuesta, Irene, West, Melanie Maputol, Montinaro, Enrica, Schwartzberg, Adam, and Cabrini, Stefano. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. France: N. p., 2019. Web. doi:10.1039/C9LC00186G.
Fernandez-Cuesta, Irene, West, Melanie Maputol, Montinaro, Enrica, Schwartzberg, Adam, & Cabrini, Stefano. A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting. France. https://doi.org/10.1039/C9LC00186G
Fernandez-Cuesta, Irene, West, Melanie Maputol, Montinaro, Enrica, Schwartzberg, Adam, and Cabrini, Stefano. Tue . "A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting". France. https://doi.org/10.1039/C9LC00186G.
@article{osti_1526649,
title = {A nanochannel through a plasmonic antenna gap: an integrated device for single particle counting},
author = {Fernandez-Cuesta, Irene and West, Melanie Maputol and Montinaro, Enrica and Schwartzberg, Adam and Cabrini, Stefano},
abstractNote = {Plasmonic nanoantennas are ideal for single molecule detection since they nano-focus the light beyond diffraction and enhance the optical fields by several orders of magnitude. But delivering the molecules into these nanometric hot-spots is a real challenge. Here, we present a dynamic sensor, with label-free real-time detection capabilities, which can detect and count molecules and particles one by one in their native environment independently of their concentration. To this end, we have integrated a 35 nm gap plasmonic bowtie antenna with a 30 nm × 30 nm nanochannel. The channel runs through the antenna gap, and delivers the analyte directly into the hot spot. We show how the antenna probes into zeptoliter volumes inside the nanochannel by observing the dark field resonance shift during the filling process of a non-fluorescent liquid. Moreover, we detect and count single quantum dots, one by one, at ultra-high concentrations of up to 25 mg mL-1. The nano-focusing of light, reduces the observation volume in five orders of magnitude compared to the diffraction limited spot, beating the diffraction limit. These results prove the unique sensitivity of the device and in the future can be extended to detection of a variety of molecules for biomedical applications.},
doi = {10.1039/C9LC00186G},
journal = {Lab on a chip (Print)},
number = 14,
volume = 19,
place = {France},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C9LC00186G

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance
journal, January 2013

  • Escobedo, Carlos; Chou, Yu-Wei; Rahman, Mohammad
  • The Analyst, Vol. 138, Issue 5
  • DOI: 10.1039/c3an36616b

A device for extraction, manipulation and stretching of DNA from single human chromosomes
journal, January 2011

  • Rasmussen, Kristian H.; Marie, Rodolphe; Lange, Jacob M.
  • Lab on a Chip, Vol. 11, Issue 8
  • DOI: 10.1039/c0lc00603c

Carbon Nanotube Sensors for Gas and Organic Vapor Detection
journal, July 2003


Antennas for light
journal, February 2011


Imprint Lithography with 25-Nanometer Resolution
journal, April 1996


Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas
journal, October 2012


Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
journal, October 2015

  • Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15852

The effect of Ti and ITO adhesion layers on gold split-ring resonators
journal, December 2010

  • Jeppesen, Claus; Mortensen, Niels Asger; Kristensen, Anders
  • Applied Physics Letters, Vol. 97, Issue 26
  • DOI: 10.1063/1.3532096

Plasmonics for future biosensors
journal, November 2012


Innovative and Tailor-made Resist and Working Stamp Materials for Advancing NIL-based Production Technology
journal, January 2013

  • Schleunitz, Arne; Vogler, Marko; Fernandez-Cuesta, Irene
  • Journal of Photopolymer Science and Technology, Vol. 26, Issue 1
  • DOI: 10.2494/photopolymer.26.119

Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications
journal, January 2014

  • Zeng, Shuwen; Baillargeat, Dominique; Ho, Ho-Pui
  • Chemical Society Reviews, Vol. 43, Issue 10
  • DOI: 10.1039/c3cs60479a

Advances in Air Quality Monitoring via Nanotechnology
journal, February 2004


Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices
journal, January 2014

  • Esquivel, J. P.; Del Campo, F. J.; Gómez de la Fuente, J. L.
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/C3EE44044C

A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations
journal, June 2013

  • Punj, Deep; Mivelle, Mathieu; Moparthi, Satish Babu
  • Nature Nanotechnology, Vol. 8, Issue 7
  • DOI: 10.1038/nnano.2013.98

Nanochannel confinement: DNA stretch approaching full contour length
journal, January 2011

  • Kim, Yoori; Kim, Ki Seok; Kounovsky, Kristy L.
  • Lab on a Chip, Vol. 11, Issue 10
  • DOI: 10.1039/c0lc00680g

An RFID reader with onboard sensing capability for monitoring fruit quality
journal, October 2007


Performance limits of nanobiosensors
journal, June 2006

  • Nair, P. R.; Alam, M. A.
  • Applied Physics Letters, Vol. 88, Issue 23
  • DOI: 10.1063/1.2211310

DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM
journal, November 2015


Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures
journal, September 2011


Mold-assisted nanolithography: A process for reliable pattern replication
journal, November 1996

  • Haisma, Jan
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 6
  • DOI: 10.1116/1.588604

Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths
journal, January 2016

  • Cheng, Yuqing; Lu, Guowei; He, Yingbo
  • Nanoscale, Vol. 8, Issue 4
  • DOI: 10.1039/C5NR07343J

Quantification of High-Efficiency Trapping of Nanoparticles in a Double Nanohole Optical Tweezer
journal, January 2014

  • Kotnala, Abhay; Gordon, Reuven
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404233z

In situ Sensing of Single Binding Events by Localized Surface Plasmon Resonance
journal, October 2008

  • Sannomiya, Takumi; Hafner, Christian; Voros, Janos
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl802317d

Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna
journal, August 2010


Ultrasensitive Chemical Analysis by Raman Spectroscopy
journal, October 1999

  • Kneipp, Katrin; Kneipp, Harald; Itzkan, Irving
  • Chemical Reviews, Vol. 99, Issue 10, p. 2957-2976
  • DOI: 10.1021/cr980133r

Single Quantum Dot-Based Nanosensor for Multiple DNA Detection
journal, March 2010

  • Zhang, Chun-yang; Hu, Juan
  • Analytical Chemistry, Vol. 82, Issue 5
  • DOI: 10.1021/ac9026675

MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability
journal, January 2013

  • Chan, Kannie W. Y.; Liu, Guanshu; Song, Xiaolei
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3525

Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement
journal, June 2009

  • Aouani, Heykel; Wenger, Jérôme; Gérard, Davy
  • ACS Nano, Vol. 3, Issue 7
  • DOI: 10.1021/nn900460t

Surface plasmon resonance sensors: review
journal, January 1999

  • Homola, Jiřı́; Yee, Sinclair S.; Gauglitz, Günter
  • Sensors and Actuators B: Chemical, Vol. 54, Issue 1-2, p. 3-15
  • DOI: 10.1016/S0925-4005(98)00321-9

Novel transparent hybrid polymer working stamp for UV-imprinting
journal, April 2009

  • Klukowska, Anna; Kolander, Anett; Bergmair, Iris
  • Microelectronic Engineering, Vol. 86, Issue 4-6
  • DOI: 10.1016/j.mee.2008.12.088

Stretching of DNA confined in nanochannels with charged walls
journal, November 2014

  • Manneschi, Chiara; Fanzio, Paola; Ala-Nissila, Tapio
  • Biomicrofluidics, Vol. 8, Issue 6
  • DOI: 10.1063/1.4904008

Observing single protein binding by optical transmission through a double nanohole aperture in a metal film
journal, January 2013

  • Al Balushi, Ahmed A.; Zehtabi-Oskuie, Ana; Gordon, Reuven
  • Biomedical Optics Express, Vol. 4, Issue 9
  • DOI: 10.1364/BOE.4.001504

In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy
journal, October 2006

  • Stuart, Douglas A.; Yuen, Jonathan M.; Shah, Nilam
  • Analytical Chemistry, Vol. 78, Issue 20
  • DOI: 10.1021/ac061238u

High-sensitivity nanosensors for biomarker detection
journal, January 2012

  • Swierczewska, Magdalena; Liu, Gang; Lee, Seulki
  • Chem. Soc. Rev., Vol. 41, Issue 7
  • DOI: 10.1039/C1CS15238F

Plasmonics for extreme light concentration and manipulation
journal, February 2010

  • Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan
  • Nature Materials, Vol. 9, Issue 3
  • DOI: 10.1038/nmat2630

Nanoimprint lithography: An old story in modern times? A review
journal, January 2008

  • Schift, Helmut
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 26, Issue 2, Article No. 458
  • DOI: 10.1116/1.2890972

Antibody nanosensors: a detailed review
journal, January 2014


Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device
journal, January 2012

  • Esquivel, J. P.; Colomer-Farrarons, J.; Castellarnau, M.
  • Lab on a Chip, Vol. 12, Issue 21
  • DOI: 10.1039/c2lc40946a

Single-quantum-dot-based DNA nanosensor
journal, October 2005

  • Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.
  • Nature Materials, Vol. 4, Issue 11
  • DOI: 10.1038/nmat1508

Detection of single DNA molecules by multicolor quantum-dot end-labeling
journal, June 2005


Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
journal, October 2009

  • Kinkhabwala, Anika; Yu, Zongfu; Fan, Shanhui
  • Nature Photonics, Vol. 3, Issue 11, p. 654-657
  • DOI: 10.1038/nphoton.2009.187

Sensing nanoparticles using a double nanohole optical trap
journal, January 2013

  • Kotnala, Abhay; DePaoli, Damon; Gordon, Reuven
  • Lab on a Chip, Vol. 13, Issue 20
  • DOI: 10.1039/c3lc50772f

Biosensing with plasmonic nanosensors
journal, June 2008

  • Anker, Jeffrey N.; Hall, W. Paige; Lyandres, Olga
  • Nature Materials, Vol. 7, Issue 6
  • DOI: 10.1038/nmat2162

Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative
journal, May 2012

  • Habteyes, Terefe G.; Dhuey, Scott; Wood, Erin
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301885u

Detection Limits for Nanoscale Biosensors
journal, April 2005

  • Sheehan, Paul E.; Whitman, Lloyd J.
  • Nano Letters, Vol. 5, Issue 4
  • DOI: 10.1021/nl050298x

Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas
journal, January 2005

  • Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.
  • Physical Review Letters, Vol. 94, Issue 1, Article No. 017402
  • DOI: 10.1103/PhysRevLett.94.017402