DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The LiteBIRD Satellite Mission: Sub-Kelvin Instrument

Abstract

© 2018 Springer Science+Business Media, LLC, part of Springer Nature Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of singlemore » frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.« less

Authors:
ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
Contributing Org.:
US LiteBIRD Team
OSTI Identifier:
1490483
Alternate Identifier(s):
OSTI ID: 1526522
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Low Temperature Physics
Additional Journal Information:
Journal Volume: 193; Journal Issue: 5-6; Journal ID: ISSN 0022-2291
Publisher:
Plenum Press
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Cosmic microwave background; Satellite; Inflation; Polarization; B-mode

Citation Formats

Suzuki, A., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Baccigalupi, C., Barron, D., Basak, S., Beckman, S., Borrill, J., Boulanger, F., Bucher, M., Calabrese, E., Chinone, Y., Cho, S., Crill, B., Cukierman, A., Curtis, D. W., de Haan, T., Dobbs, M., Dominjon, A., Dotani, T., Duband, L., Ducout, A., Dunkley, J., Duval, J. M., Elleflot, T., Eriksen, H. K., Errard, J., Fischer, J., Fujino, T., Funaki, T., Fuskeland, U., Ganga, K., Goeckner-Wald, N., Grain, J., Halverson, N. W., Hamada, T., Hasebe, T., Hasegawa, M., Hattori, K., Hattori, M., Hayes, L., Hazumi, M., Hidehira, N., Hill, C. A., Hilton, G., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Inoue, M., Inoue, Y., Irwin, K. D., Ishino, H., Jeong, O., Kanai, H., Kaneko, D., Kashima, S., Katayama, N., Kawasaki, T., Kernasovskiy, S. A., Keskitalo, R., Kibayashi, A., Kida, Y., Kimura, K., Kisner, T., Kohri, K., Komatsu, E., Komatsu, K., Kuo, C. L., Kurinsky, N. A., Kusaka, A., Lazarian, A., Lee, A. T., Li, D., Linder, E., Maffei, B., Mangilli, A., Maki, M., Matsumura, T., Matsuura, S., Meilhan, D., Mima, S., Minami, Y., Mitsuda, K., Montier, L., Nagai, M., Nagasaki, T., Nagata, R., Nakajima, M., Nakamura, S., Namikawa, T., Naruse, M., Nishino, H., Nitta, T., Noguchi, T., Ogawa, H., Oguri, S., Okada, N., Okamoto, A., Okamura, T., Otani, C., Patanchon, G., Pisano, G., Rebeiz, G., Remazeilles, M., Richards, P. L., Sakai, S., Sakurai, Y., Sato, Y., Sato, N., Sawada, M., Segawa, Y., Sekimoto, Y., Seljak, U., Sherwin, B. D., Shimizu, T., Shinozaki, K., Stompor, R., Sugai, H., Sugita, H., Suzuki, J., Tajima, O., Takada, S., Takaku, R., Takakura, S., Takatori, S., Tanabe, D., Taylor, E., Thompson, K. L., Thorne, B., Tomaru, T., Tomida, T., Tomita, N., Tristram, M., Tucker, C., Turin, P., Tsujimoto, M., Uozumi, S., Utsunomiya, S., Uzawa, Y., Vansyngel, F., Wehus, I. K., Westbrook, B., Willer, M., Whitehorn, N., Yamada, Y., Yamamoto, R., Yamasaki, N., Yamashita, T., and Yoshida, M. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument. United States: N. p., 2018. Web. doi:10.1007/s10909-018-1947-7.
Suzuki, A., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Baccigalupi, C., Barron, D., Basak, S., Beckman, S., Borrill, J., Boulanger, F., Bucher, M., Calabrese, E., Chinone, Y., Cho, S., Crill, B., Cukierman, A., Curtis, D. W., de Haan, T., Dobbs, M., Dominjon, A., Dotani, T., Duband, L., Ducout, A., Dunkley, J., Duval, J. M., Elleflot, T., Eriksen, H. K., Errard, J., Fischer, J., Fujino, T., Funaki, T., Fuskeland, U., Ganga, K., Goeckner-Wald, N., Grain, J., Halverson, N. W., Hamada, T., Hasebe, T., Hasegawa, M., Hattori, K., Hattori, M., Hayes, L., Hazumi, M., Hidehira, N., Hill, C. A., Hilton, G., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Inoue, M., Inoue, Y., Irwin, K. D., Ishino, H., Jeong, O., Kanai, H., Kaneko, D., Kashima, S., Katayama, N., Kawasaki, T., Kernasovskiy, S. A., Keskitalo, R., Kibayashi, A., Kida, Y., Kimura, K., Kisner, T., Kohri, K., Komatsu, E., Komatsu, K., Kuo, C. L., Kurinsky, N. A., Kusaka, A., Lazarian, A., Lee, A. T., Li, D., Linder, E., Maffei, B., Mangilli, A., Maki, M., Matsumura, T., Matsuura, S., Meilhan, D., Mima, S., Minami, Y., Mitsuda, K., Montier, L., Nagai, M., Nagasaki, T., Nagata, R., Nakajima, M., Nakamura, S., Namikawa, T., Naruse, M., Nishino, H., Nitta, T., Noguchi, T., Ogawa, H., Oguri, S., Okada, N., Okamoto, A., Okamura, T., Otani, C., Patanchon, G., Pisano, G., Rebeiz, G., Remazeilles, M., Richards, P. L., Sakai, S., Sakurai, Y., Sato, Y., Sato, N., Sawada, M., Segawa, Y., Sekimoto, Y., Seljak, U., Sherwin, B. D., Shimizu, T., Shinozaki, K., Stompor, R., Sugai, H., Sugita, H., Suzuki, J., Tajima, O., Takada, S., Takaku, R., Takakura, S., Takatori, S., Tanabe, D., Taylor, E., Thompson, K. L., Thorne, B., Tomaru, T., Tomida, T., Tomita, N., Tristram, M., Tucker, C., Turin, P., Tsujimoto, M., Uozumi, S., Utsunomiya, S., Uzawa, Y., Vansyngel, F., Wehus, I. K., Westbrook, B., Willer, M., Whitehorn, N., Yamada, Y., Yamamoto, R., Yamasaki, N., Yamashita, T., & Yoshida, M. The LiteBIRD Satellite Mission: Sub-Kelvin Instrument. United States. https://doi.org/10.1007/s10909-018-1947-7
Suzuki, A., Ade, P. A. R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Baccigalupi, C., Barron, D., Basak, S., Beckman, S., Borrill, J., Boulanger, F., Bucher, M., Calabrese, E., Chinone, Y., Cho, S., Crill, B., Cukierman, A., Curtis, D. W., de Haan, T., Dobbs, M., Dominjon, A., Dotani, T., Duband, L., Ducout, A., Dunkley, J., Duval, J. M., Elleflot, T., Eriksen, H. K., Errard, J., Fischer, J., Fujino, T., Funaki, T., Fuskeland, U., Ganga, K., Goeckner-Wald, N., Grain, J., Halverson, N. W., Hamada, T., Hasebe, T., Hasegawa, M., Hattori, K., Hattori, M., Hayes, L., Hazumi, M., Hidehira, N., Hill, C. A., Hilton, G., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Inoue, M., Inoue, Y., Irwin, K. D., Ishino, H., Jeong, O., Kanai, H., Kaneko, D., Kashima, S., Katayama, N., Kawasaki, T., Kernasovskiy, S. A., Keskitalo, R., Kibayashi, A., Kida, Y., Kimura, K., Kisner, T., Kohri, K., Komatsu, E., Komatsu, K., Kuo, C. L., Kurinsky, N. A., Kusaka, A., Lazarian, A., Lee, A. T., Li, D., Linder, E., Maffei, B., Mangilli, A., Maki, M., Matsumura, T., Matsuura, S., Meilhan, D., Mima, S., Minami, Y., Mitsuda, K., Montier, L., Nagai, M., Nagasaki, T., Nagata, R., Nakajima, M., Nakamura, S., Namikawa, T., Naruse, M., Nishino, H., Nitta, T., Noguchi, T., Ogawa, H., Oguri, S., Okada, N., Okamoto, A., Okamura, T., Otani, C., Patanchon, G., Pisano, G., Rebeiz, G., Remazeilles, M., Richards, P. L., Sakai, S., Sakurai, Y., Sato, Y., Sato, N., Sawada, M., Segawa, Y., Sekimoto, Y., Seljak, U., Sherwin, B. D., Shimizu, T., Shinozaki, K., Stompor, R., Sugai, H., Sugita, H., Suzuki, J., Tajima, O., Takada, S., Takaku, R., Takakura, S., Takatori, S., Tanabe, D., Taylor, E., Thompson, K. L., Thorne, B., Tomaru, T., Tomida, T., Tomita, N., Tristram, M., Tucker, C., Turin, P., Tsujimoto, M., Uozumi, S., Utsunomiya, S., Uzawa, Y., Vansyngel, F., Wehus, I. K., Westbrook, B., Willer, M., Whitehorn, N., Yamada, Y., Yamamoto, R., Yamasaki, N., Yamashita, T., and Yoshida, M. Thu . "The LiteBIRD Satellite Mission: Sub-Kelvin Instrument". United States. https://doi.org/10.1007/s10909-018-1947-7. https://www.osti.gov/servlets/purl/1490483.
@article{osti_1490483,
title = {The LiteBIRD Satellite Mission: Sub-Kelvin Instrument},
author = {Suzuki, A. and Ade, P. A. R. and Akiba, Y. and Alonso, D. and Arnold, K. and Aumont, J. and Baccigalupi, C. and Barron, D. and Basak, S. and Beckman, S. and Borrill, J. and Boulanger, F. and Bucher, M. and Calabrese, E. and Chinone, Y. and Cho, S. and Crill, B. and Cukierman, A. and Curtis, D. W. and de Haan, T. and Dobbs, M. and Dominjon, A. and Dotani, T. and Duband, L. and Ducout, A. and Dunkley, J. and Duval, J. M. and Elleflot, T. and Eriksen, H. K. and Errard, J. and Fischer, J. and Fujino, T. and Funaki, T. and Fuskeland, U. and Ganga, K. and Goeckner-Wald, N. and Grain, J. and Halverson, N. W. and Hamada, T. and Hasebe, T. and Hasegawa, M. and Hattori, K. and Hattori, M. and Hayes, L. and Hazumi, M. and Hidehira, N. and Hill, C. A. and Hilton, G. and Hubmayr, J. and Ichiki, K. and Iida, T. and Imada, H. and Inoue, M. and Inoue, Y. and Irwin, K. D. and Ishino, H. and Jeong, O. and Kanai, H. and Kaneko, D. and Kashima, S. and Katayama, N. and Kawasaki, T. and Kernasovskiy, S. A. and Keskitalo, R. and Kibayashi, A. and Kida, Y. and Kimura, K. and Kisner, T. and Kohri, K. and Komatsu, E. and Komatsu, K. and Kuo, C. L. and Kurinsky, N. A. and Kusaka, A. and Lazarian, A. and Lee, A. T. and Li, D. and Linder, E. and Maffei, B. and Mangilli, A. and Maki, M. and Matsumura, T. and Matsuura, S. and Meilhan, D. and Mima, S. and Minami, Y. and Mitsuda, K. and Montier, L. and Nagai, M. and Nagasaki, T. and Nagata, R. and Nakajima, M. and Nakamura, S. and Namikawa, T. and Naruse, M. and Nishino, H. and Nitta, T. and Noguchi, T. and Ogawa, H. and Oguri, S. and Okada, N. and Okamoto, A. and Okamura, T. and Otani, C. and Patanchon, G. and Pisano, G. and Rebeiz, G. and Remazeilles, M. and Richards, P. L. and Sakai, S. and Sakurai, Y. and Sato, Y. and Sato, N. and Sawada, M. and Segawa, Y. and Sekimoto, Y. and Seljak, U. and Sherwin, B. D. and Shimizu, T. and Shinozaki, K. and Stompor, R. and Sugai, H. and Sugita, H. and Suzuki, J. and Tajima, O. and Takada, S. and Takaku, R. and Takakura, S. and Takatori, S. and Tanabe, D. and Taylor, E. and Thompson, K. L. and Thorne, B. and Tomaru, T. and Tomida, T. and Tomita, N. and Tristram, M. and Tucker, C. and Turin, P. and Tsujimoto, M. and Uozumi, S. and Utsunomiya, S. and Uzawa, Y. and Vansyngel, F. and Wehus, I. K. and Westbrook, B. and Willer, M. and Whitehorn, N. and Yamada, Y. and Yamamoto, R. and Yamasaki, N. and Yamashita, T. and Yoshida, M.},
abstractNote = {© 2018 Springer Science+Business Media, LLC, part of Springer Nature Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.},
doi = {10.1007/s10909-018-1947-7},
journal = {Journal of Low Temperature Physics},
number = 5-6,
volume = 193,
place = {United States},
year = {Thu May 10 00:00:00 EDT 2018},
month = {Thu May 10 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 75 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (Color online) (Left) Cross section of the cold mission system and insert, highlighting the sub-Kelvin instrument. The red and blue arrows indicate the optical path for the LFT and the HFT, respectively. (Right) The LiteBIRD sensitivities for each frequency band. Different colors indicate different focal plane modules. Themore » LFT has four types of modules with a staggering frequency schedule. The HFT has three single color pixel types with overlapping frequency coverage.« less

Save / Share:

Works referenced in this record:

Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument
journal, February 2014

  • Kusaka, A.; Essinger-Hileman, T.; Appel, J. W.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4862058

Multi-Chroic Dual-Polarization Bolometric Detectors for Studies of the Cosmic Microwave Background
journal, January 2014


Impact of particles on the Planck HFI detectors: Ground-based measurements and physical interpretation
journal, September 2014


Qualification campaign of the 50 mK hybrid sorption-ADR cooler for SPICA/SAFARI
journal, December 2015


AlMn Transition Edge Sensors for Advanced ACTPol
journal, February 2016

  • Li, Dale; Austermann, Jason E.; Beall, James A.
  • Journal of Low Temperature Physics, Vol. 184, Issue 1-2
  • DOI: 10.1007/s10909-016-1526-8

Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER
conference, July 2016

  • Hubmayr, Johannes; Austermann, Jason E.; Beall, James A.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2231896

Improved performance of TES bolometers using digital feedback
conference, September 2012

  • de Haan, Tijmen; Smecher, Graeme; Dobbs, Matt
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.925658

Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument
journal, February 2014

  • Kusaka, A.; Essinger-Hileman, T.; Appel, J. W.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4862058

Works referencing / citing this record:

Weyl R2 inflation with an emergent Planck scale
journal, October 2019


The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status
journal, September 2018

  • Westbrook, B.; Ade, P. A. R.; Aguilar, M.
  • Journal of Low Temperature Physics, Vol. 193, Issue 5-6
  • DOI: 10.1007/s10909-018-2059-0

LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection
journal, February 2019


Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
journal, January 2020


Design of a Testbed for the Study of System Interference in Space CMB Polarimetry
journal, January 2020


Complex impedance of TESs under AC bias using FDM readout system
journal, April 2019

  • Taralli, E.; Khosropanah, P.; Gottardi, L.
  • AIP Advances, Vol. 9, Issue 4
  • DOI: 10.1063/1.5089739

The promising future of a robust cosmological neutrino mass measurement
journal, January 2019

  • Brinckmann, Thejs; Hooper, Deanna C.; Archidiacono, Maria
  • Journal of Cosmology and Astroparticle Physics, Vol. 2019, Issue 01
  • DOI: 10.1088/1475-7516/2019/01/059

Optimistic estimation on probing primordial gravitational waves with CMB B-mode polarization
journal, November 2018

  • Huang, Qing-Guo; Wang, Sai
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 2
  • DOI: 10.1093/mnras/sty3262

A unified pseudo- C ℓ framework
journal, January 2019

  • Alonso, David; Sanchez, Javier; Slosar, Anže
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 3
  • DOI: 10.1093/mnras/stz093

Full-sky beam convolution for cosmic microwave background applications
journal, May 2019

  • Duivenvoorden, Adriaan J.; Gudmundsson, Jon E.; Rahlin, Alexandra S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 486, Issue 4
  • DOI: 10.1093/mnras/stz1143

CMB foreground measurements through broad-band radio spectro-polarimetry: prospects of the SKA-MPG telescope
journal, June 2019

  • Basu, Aritra; Schwarz, Dominik J.; Klöckner, Hans-Rainer
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 2
  • DOI: 10.1093/mnras/stz1637

The C-Band All-Sky Survey (C-BASS): Simulated parametric fitting in single pixels in total intensity and polarization
journal, October 2019

  • Jew, Luke; Taylor, Angela C.; Jones, Michael E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
  • DOI: 10.1093/mnras/stz2697

What does inflation say about dark energy given the swampland conjectures?
journal, August 2019


Rotation of the CMB polarization by foreground lensing
journal, August 2019


Lensing reconstruction in post-Born cosmic microwave background weak lensing
journal, August 2018


Warm inflation in the light of swampland criteria
journal, March 2019


Constraining power of cosmological observables: Blind redshift spots and optimal ranges
journal, March 2019


$$\alpha $$α-attractor from superconformal E-models in brane inflation
journal, January 2020


The EBEX Balloon-borne Experiment—Detectors and Readout
journal, November 2018

  • Abitbol, Maximilian; Aboobaker, Asad M.; Ade, Peter
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 1
  • DOI: 10.3847/1538-4365/aae436

Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
text, January 2020

  • Sugai, H.; Ade, P. A. R.; Akiba, Y.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.53322

Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
text, January 2020

  • Sugai, H.; Ade, P. A. R.; Akiba, Y.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.63843

Constraining power of cosmological observables: blind redshift spots and optimal ranges
text, January 2018


CMB foreground measurements through broad-band radio spectro-polarimetry: prospects of the SKA-MPG telescope
text, January 2019


Complex impedance of TESs under AC bias using FDM readout system
text, January 2021


Figures / Tables found in this record:

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.