DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the Static Interfacial Polymer Layer by Exploring the Dispersion States of Nanocomposites

Abstract

The dynamic and static properties of the interfacial region between polymer and nanoparticles have wide-ranging consequences on performances of nanomaterials. The thickness and density of the static layer are particularly difficult to assess experimentally due to superimposing nanoparticle interactions. Here, we tune the dispersion of silica nanoparticles in nanocomposites by preadsorption of polymer layers in the precursor solutions, and by varying the molecular weight of the matrix chains. Nanocomposite structures ranging from ideal dispersion to repulsive order or various degrees of aggregation are generated and observed by small-angle scattering. Preadsorbed chains are found to promote ideal dispersion, before desorption in the late stages of nanocomposite formation. The microstructure of the interfacial polymer layer is characterized by detailed modeling of X-ray and neutron scattering. Only in ideally well-dispersed systems a static interfacial layer of reduced polymer density over a thickness of ca. 2 nm is evidenced based on the analysis with a form-free density profile optimized using numerical simulations. This interfacial gradient layer is found to be independent of the thickness of the initially adsorbed polymer, but appears to be generated by out-of-equilibrium packing and folding of the preadsorbed layer. The impact of annealing is investigated to study the approach ofmore » equilibrium, showing that initially ideally well-dispersed systems adopt a repulsive hard-sphere structure, while the static interfacial layer disappears. Furthermore, this study thus promotes the fundamental understanding of the interplay between effects which are decisive for macroscopic material properties: polymer-mediated interparticle interactions, and particle interfacial effects on the surrounding polymer.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [4];  [5]; ORCiD logo [2];  [6]; ORCiD logo [4]; ORCiD logo [6]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. de Montpellier, Montpellier (France)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  5. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  6. Univ. de Montpellier, Montpellier (France)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1526380
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 11; Journal Issue: 19; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; polymer nanocomposites; interfacial layer; density gradient; nanoparticle dispersion; chain adsorption; small-angle scattering; reverse Monte Carlo

Citation Formats

Genix, Anne-Caroline, Bocharova, Vera, Carroll, Bobby, Lehmann, Michelle, Saito, Tomonori, Krueger, Susan, He, Lilin, Dieudonné-George, Philippe, Sokolov, Alexei P., and Oberdisse, Julian. Understanding the Static Interfacial Polymer Layer by Exploring the Dispersion States of Nanocomposites. United States: N. p., 2019. Web. doi:10.1021/acsami.9b04553.
Genix, Anne-Caroline, Bocharova, Vera, Carroll, Bobby, Lehmann, Michelle, Saito, Tomonori, Krueger, Susan, He, Lilin, Dieudonné-George, Philippe, Sokolov, Alexei P., & Oberdisse, Julian. Understanding the Static Interfacial Polymer Layer by Exploring the Dispersion States of Nanocomposites. United States. https://doi.org/10.1021/acsami.9b04553
Genix, Anne-Caroline, Bocharova, Vera, Carroll, Bobby, Lehmann, Michelle, Saito, Tomonori, Krueger, Susan, He, Lilin, Dieudonné-George, Philippe, Sokolov, Alexei P., and Oberdisse, Julian. Mon . "Understanding the Static Interfacial Polymer Layer by Exploring the Dispersion States of Nanocomposites". United States. https://doi.org/10.1021/acsami.9b04553. https://www.osti.gov/servlets/purl/1526380.
@article{osti_1526380,
title = {Understanding the Static Interfacial Polymer Layer by Exploring the Dispersion States of Nanocomposites},
author = {Genix, Anne-Caroline and Bocharova, Vera and Carroll, Bobby and Lehmann, Michelle and Saito, Tomonori and Krueger, Susan and He, Lilin and Dieudonné-George, Philippe and Sokolov, Alexei P. and Oberdisse, Julian},
abstractNote = {The dynamic and static properties of the interfacial region between polymer and nanoparticles have wide-ranging consequences on performances of nanomaterials. The thickness and density of the static layer are particularly difficult to assess experimentally due to superimposing nanoparticle interactions. Here, we tune the dispersion of silica nanoparticles in nanocomposites by preadsorption of polymer layers in the precursor solutions, and by varying the molecular weight of the matrix chains. Nanocomposite structures ranging from ideal dispersion to repulsive order or various degrees of aggregation are generated and observed by small-angle scattering. Preadsorbed chains are found to promote ideal dispersion, before desorption in the late stages of nanocomposite formation. The microstructure of the interfacial polymer layer is characterized by detailed modeling of X-ray and neutron scattering. Only in ideally well-dispersed systems a static interfacial layer of reduced polymer density over a thickness of ca. 2 nm is evidenced based on the analysis with a form-free density profile optimized using numerical simulations. This interfacial gradient layer is found to be independent of the thickness of the initially adsorbed polymer, but appears to be generated by out-of-equilibrium packing and folding of the preadsorbed layer. The impact of annealing is investigated to study the approach of equilibrium, showing that initially ideally well-dispersed systems adopt a repulsive hard-sphere structure, while the static interfacial layer disappears. Furthermore, this study thus promotes the fundamental understanding of the interplay between effects which are decisive for macroscopic material properties: polymer-mediated interparticle interactions, and particle interfacial effects on the surrounding polymer.},
doi = {10.1021/acsami.9b04553},
journal = {ACS Applied Materials and Interfaces},
number = 19,
volume = 11,
place = {United States},
year = {Mon Apr 22 00:00:00 EDT 2019},
month = {Mon Apr 22 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enhancing the Mechanical Properties of Glassy Nanocomposites by Tuning Polymer Molecular Weight
journal, September 2018

  • Genix, Anne-Caroline; Bocharova, Vera; Kisliuk, Alexander
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 39
  • DOI: 10.1021/acsami.8b13109

Graphite Nanoplatelet−Epoxy Composite Thermal Interface Materials
journal, May 2007

  • Yu, Aiping; Ramesh, Palanisamy; Itkis, Mikhail E.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 21
  • DOI: 10.1021/jp071761s

Current issues in research on structure–property relationships in polymer nanocomposites
journal, July 2010


Reinforcement of elastomers
journal, June 2002

  • Heinrich, Gert; Klüppel, Manfred; Vilgis, Thomas A.
  • Current Opinion in Solid State and Materials Science, Vol. 6, Issue 3
  • DOI: 10.1016/S1359-0286(02)00030-X

Role of Filler Shape and Connectivity on the Viscoelastic Behavior in Polymer Nanocomposites
journal, July 2015


A high-temperature dielectric process as a probe of large-scale silica filler structure in simplified industrial nanocomposites
journal, January 2015

  • Baeza, Guilhem P.; Oberdisse, Julian; Alegria, Angel
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1039/C4CP04597A

“Gel-like” Mechanical Reinforcement in Polymer Nanocomposite Melts
journal, January 2010

  • Akcora, Pinar; Kumar, Sanat K.; Moll, Joseph
  • Macromolecules, Vol. 43, Issue 2
  • DOI: 10.1021/ma902072d

Mechanical Properties of Thin Glassy Polymer Films Filled with Spherical Polymer-Grafted Nanoparticles
journal, July 2012

  • Maillard, Damien; Kumar, Sanat K.; Fragneaud, Benjamin
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl301792g

Transparent BaTiO 3 /PMMA Nanocomposite Films for Display Technologies: Facile Surface Modification Approach for BaTiO 3 Nanoparticles
journal, April 2018

  • Suematsu, Koichi; Arimura, Masashi; Uchiyama, Naoyuki
  • ACS Applied Nano Materials, Vol. 1, Issue 5
  • DOI: 10.1021/acsanm.8b00650

Unraveling the Molecular Weight Dependence of Interfacial Interactions in Poly(2-vinylpyridine)/Silica Nanocomposites
journal, January 2017


Detection of Surface-Immobilized Components and Their Role in Viscoelastic Reinforcement of Rubber–Silica Nanocomposites
journal, April 2014

  • Mujtaba, A.; Keller, M.; Ilisch, S.
  • ACS Macro Letters, Vol. 3, Issue 5
  • DOI: 10.1021/mz500192r

Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions
journal, May 2017

  • Cheng, Shiwang; Carroll, Bobby; Bocharova, Vera
  • The Journal of Chemical Physics, Vol. 146, Issue 20
  • DOI: 10.1063/1.4978504

Unexpected Molecular Weight Effect in Polymer Nanocomposites
journal, January 2016


Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites
journal, June 2016


Role of Casting Solvent on Nanoparticle Dispersion in Polymer Nanocomposites
journal, July 2014

  • Jouault, Nicolas; Zhao, Dan; Kumar, Sanat K.
  • Macromolecules, Vol. 47, Issue 15
  • DOI: 10.1021/ma500619g

Controlling the Thermomechanical Behavior of Nanoparticle/Polymer Films
journal, July 2014

  • Zhao, Dan; Schneider, Dirk; Fytas, George
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn503486e

Mechanical reinforcement in model elastomer nanocomposites with tuned microstructure and interactions
journal, February 2013


Development of Filler Structure in Colloidal Silica–Polymer Nanocomposites
journal, October 2011

  • Meth, Jeffrey S.; Zane, Stephen G.; Chi, Changzai
  • Macromolecules, Vol. 44, Issue 20
  • DOI: 10.1021/ma201714u

Poly(ethylene oxide)/Silica Nanocomposites:  Structure and Rheology
journal, December 2002


Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior
journal, January 2011

  • Chevigny, Chloé; Dalmas, Florent; Di Cola, Emanuela
  • Macromolecules, Vol. 44, Issue 1
  • DOI: 10.1021/ma101332s

Nanocomposites with Polymer Grafted Nanoparticles
journal, April 2013

  • Kumar, Sanat K.; Jouault, Nicolas; Benicewicz, Brian
  • Macromolecules, Vol. 46, Issue 9
  • DOI: 10.1021/ma4001385

Combined FTIR and Dielectric Investigation of Poly(vinyl acetate) Adsorbed on Silica Particles
journal, May 2013

  • Füllbrandt, Marieke; Purohit, Purv J.; Schönhals, Andreas
  • Macromolecules, Vol. 46, Issue 11
  • DOI: 10.1021/ma400461p

Effect of Matrix Molecular Weight on the Coarsening Mechanism of Polymer-Grafted Gold Nanocrystals
journal, June 2010

  • Jia, Xiaolong; Listak, Jessica; Witherspoon, Velencia
  • Langmuir, Vol. 26, Issue 14
  • DOI: 10.1021/la100840a

Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites
journal, June 2011

  • Janes, Dustin W.; Moll, Joseph F.; Harton, Shane E.
  • Macromolecules, Vol. 44, Issue 12
  • DOI: 10.1021/ma200205j

Thermally Reversible Aggregation of Gold Nanoparticles in Polymer Nanocomposites through Hydrogen Bonding
journal, October 2013

  • Heo, Kyuyoung; Miesch, Caroline; Emrick, Todd
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402813q

General Strategies for Nanoparticle Dispersion
journal, March 2006


Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM
journal, December 2012

  • Baeza, Guilhem P.; Genix, Anne-Caroline; Degrandcourt, Christophe
  • Macromolecules, Vol. 46, Issue 1
  • DOI: 10.1021/ma302248p

Tuning Structure and Rheology of Silica–Latex Nanocomposites with the Molecular Weight of Matrix Chains: A Coupled SAXS–TEM–Simulation Approach
journal, April 2014

  • Banc, Amélie; Genix, Anne-Caroline; Chirat, Mathieu
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma500465n

Structural Development of Nanoparticle Dispersion during Drying in Polymer Nanocomposite Films
journal, November 2016


Bound Layers “Cloak” Nanoparticles in Strongly Interacting Polymer Nanocomposites
journal, November 2016


Characterization of Polymer Nanocomposite Interphase and Its Impact on Mechanical Properties
journal, September 2006

  • Ciprari, Dan; Jacob, Karl; Tannenbaum, Rina
  • Macromolecules, Vol. 39, Issue 19
  • DOI: 10.1021/ma0602270

Nanostructure and properties of polysiloxane-layered silicate nanocomposites
journal, June 2000


Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution
journal, January 1980

  • Scheutjens, J. M. H. M.; Fleer, G. J.
  • The Journal of Physical Chemistry, Vol. 84, Issue 2
  • DOI: 10.1021/j100439a011

Bound Polymer Layer in Nanocomposites
journal, April 2013

  • Jouault, Nicolas; Moll, Joseph F.; Meng, Dong
  • ACS Macro Letters, Vol. 2, Issue 5
  • DOI: 10.1021/mz300646a

Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects
journal, February 2011

  • Papon, Aurélie; Saalwächter, Kay; Schäler, Kerstin
  • Macromolecules, Vol. 44, Issue 4
  • DOI: 10.1021/ma102486x

Space-Dependent Dynamics in 1,4-Polybutadiene Nanocomposite
journal, August 2013

  • Roh, J. H.; Tyagi, M.; Hogan, T. E.
  • Macromolecules, Vol. 46, Issue 16
  • DOI: 10.1021/ma401597r

Kinetic Polymer Arrest in Percolated SWNT Networks
journal, November 2014

  • Ashkar, Rana; Abdul Baki, Mansour; Tyagi, Madhusudan
  • ACS Macro Letters, Vol. 3, Issue 12
  • DOI: 10.1021/mz500636s

Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases
journal, March 2013


The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data
journal, August 2007


Enhancing the Mechanical Properties of Glassy Nanocomposites by Tuning Polymer Molecular Weight
journal, September 2018

  • Genix, Anne-Caroline; Bocharova, Vera; Kisliuk, Alexander
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 39
  • DOI: 10.1021/acsami.8b13109

Variations on contrast in SANS: determination of self and distinct correlation functions
journal, December 1996


Densification of Alkoxide-Derived Fine Silica Powder Compact by Ultra-High-Pressure Cold Isostatic Pressing
journal, January 1993


The 30 m Small-Angle Neutron Scattering Instruments at the National Institute of Standards and Technology
journal, June 1998

  • Glinka, C. J.; Barker, J. G.; Hammouda, B.
  • Journal of Applied Crystallography, Vol. 31, Issue 3, p. 430-445
  • DOI: 10.1107/S0021889897017020

Reduction and analysis of SANS and USANS data using IGOR Pro
journal, November 2006