DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the relative bias of void tracers in the Dark Energy Survey

Abstract

Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of mock data we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing datamore » obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Finally, our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.« less

Authors:
 [1];  [2]; ORCiD logo [1];  [3];  [4];  [5];  [6];  [7];  [8];  [9]; ORCiD logo [10];  [11];  [12];  [13];  [6]; ORCiD logo [14];  [15];  [16];  [17];  [7] more »;  [14];  [18];  [19];  [20];  [9];  [13]; ORCiD logo [21];  [9];  [22];  [23];  [24];  [21];  [25]; ORCiD logo [6];  [14];  [9];  [26];  [27];  [28]; ORCiD logo [29];  [30];  [27];  [31];  [9];  [32]; ORCiD logo [7];  [19]; ORCiD logo [33];  [15];  [34]; ORCiD logo [35];  [36];  [18];  [9];  [37];  [38];  [18];  [39]; ORCiD logo [40];  [41]; ORCiD logo [42];  [38];  [8];  [9];  [43] « less
  1. Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching, Germany, Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  2. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany
  3. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany, Max-Planck-Institute for Astrophysics, Karl-Schwarzschild Strasse 1, D-85748 Garching, Germany
  4. Excellence Cluster Universe, Boltzmannstrasse 2, D-85748 Garching, Germany, Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany, Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
  5. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA, Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  6. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  7. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  8. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  9. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  10. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  11. Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St, Pasadena, CA 91101, USA
  12. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France, Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France
  13. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  14. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA
  16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  17. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA
  18. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  19. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  20. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  21. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  22. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  23. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  24. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  25. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany, Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK, Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  26. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  27. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  28. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  29. Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany, Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany
  30. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  31. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  32. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  33. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  34. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain, Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  35. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  36. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  37. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  38. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  39. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  40. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  41. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  42. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  43. (
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1526094
Alternate Identifier(s):
OSTI ID: 1471731; OSTI ID: 1531212; OSTI ID: 1709101
Report Number(s):
arXiv:1806.06860; FERMILAB-PUB-18-220
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
AC02-07CH11359; AC05-00OR22725; SC0019193
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 487 Journal Issue: 2; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: clusters: general; large-scale structure of Universe; cosmology: observations

Citation Formats

Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., Wester, W., and DES Collaboration). On the relative bias of void tracers in the Dark Energy Survey. United Kingdom: N. p., 2019. Web. doi:10.1093/mnras/stz1470.
Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., Wester, W., & DES Collaboration). On the relative bias of void tracers in the Dark Energy Survey. United Kingdom. https://doi.org/10.1093/mnras/stz1470
Pollina, G., Hamaus, N., Paech, K., Dolag, K., Weller, J., Sánchez, C., Rykoff, E. S., Jain, B., Abbott, T. M. C., Allam, S., Avila, S., Bernstein, R. A., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., DePoy, D. L., Desai, S., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruen, D., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kuehn, K., Kuropatkin, N., Lima, M., March, M., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Romer, A. K., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Walker, A. R., Wester, W., and DES Collaboration). Fri . "On the relative bias of void tracers in the Dark Energy Survey". United Kingdom. https://doi.org/10.1093/mnras/stz1470.
@article{osti_1526094,
title = {On the relative bias of void tracers in the Dark Energy Survey},
author = {Pollina, G. and Hamaus, N. and Paech, K. and Dolag, K. and Weller, J. and Sánchez, C. and Rykoff, E. S. and Jain, B. and Abbott, T. M. C. and Allam, S. and Avila, S. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Cunha, C. E. and D’Andrea, C. B. and da Costa, L. N. and De Vicente, J. and DePoy, D. L. and Desai, S. and Diehl, H. T. and Doel, P. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Giannantonio, T. and Gruen, D. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. L. and Honscheid, K. and Hoyle, B. and James, D. J. and Jeltema, T. and Kuehn, K. and Kuropatkin, N. and Lima, M. and March, M. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Plazas, A. A. and Romer, A. K. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Tarle, G. and Walker, A. R. and Wester, W. and DES Collaboration)},
abstractNote = {Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of mock data we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing data obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Finally, our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.},
doi = {10.1093/mnras/stz1470},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 2,
volume = 487,
place = {United Kingdom},
year = {Fri May 31 00:00:00 EDT 2019},
month = {Fri May 31 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1093/mnras/stz1470

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The part and the whole: voids, supervoids, and their ISW imprint
journal, December 2017

  • Kovács, András
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 2
  • DOI: 10.1093/mnras/stx3213

A First Application of the Alcock-Paczynski test to Stacked Cosmic Voids
journal, December 2012


The MICE grand challenge lightcone simulation – I. Dark matter clustering
journal, March 2015

  • Fosalba, P.; Crocce, M.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 4
  • DOI: 10.1093/mnras/stv138

The CLASSgal code for relativistic cosmological large scale structure
journal, November 2013

  • Dio, Enea Di; Montanari, Francesco; Lesgourgues, Julien
  • Journal of Cosmology and Astroparticle Physics, Vol. 2013, Issue 11
  • DOI: 10.1088/1475-7516/2013/11/044

On combining galaxy clustering and weak lensing to unveil galaxy biasing via the halo model: Galaxy biasing in the halo model
journal, September 2012


The dark Halo—Spheroid Conspiracy and the Origin of Elliptical Galaxies
journal, March 2013


Imprint of DES superstructures on the cosmic microwave background
journal, November 2016

  • Kovács, A.; Sánchez, C.; García-Bellido, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 4
  • DOI: 10.1093/mnras/stw2968

Weak lensing by voids in modified lensing potentials
journal, August 2015

  • Barreira, Alexandre; Cautun, Marius; Li, Baojiu
  • Journal of Cosmology and Astroparticle Physics, Vol. 2015, Issue 08
  • DOI: 10.1088/1475-7516/2015/08/028

Halo assembly bias and the tidal anisotropy of the local halo environment
journal, February 2018

  • Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 3
  • DOI: 10.1093/mnras/sty496

Planck 2013 results. XVI. Cosmological parameters
journal, October 2014


First measurement of gravitational lensing by cosmic voids in SDSS
journal, April 2014

  • Melchior, Peter; Sutter, P. M.; Sheldon, Erin S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 440, Issue 4
  • DOI: 10.1093/mnras/stu456

A Possible cold Imprint of Voids on the Microwave Background Radiation
journal, April 2014


CONSTRAINING THE SCATTER IN THE MASS-RICHNESS RELATION OF maxBCG CLUSTERS WITH WEAK LENSING AND X-RAY DATA
journal, June 2009


The self-similar evolution of holes in an Einstein-de Sitter universe
journal, May 1985

  • Bertschinger, E.
  • The Astrophysical Journal Supplement Series, Vol. 58
  • DOI: 10.1086/191027

Probing cosmology and gravity with redshift-space distortions around voids
journal, November 2015

  • Hamaus, Nico; Sutter, P. M.; Lavaux, Guilhem
  • Journal of Cosmology and Astroparticle Physics, Vol. 2015, Issue 11
  • DOI: 10.1088/1475-7516/2015/11/036

zCOSMOS 20k: satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ∼ 0.7
journal, December 2013

  • Kovač, K.; Lilly, S. J.; Knobel, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 438, Issue 1
  • DOI: 10.1093/mnras/stt2241

What determines large scale galaxy clustering: halo mass or local density?
journal, February 2017


A hierarchy of voids: much ado about nothing
journal, May 2004


On the spatial correlations of Abell clusters
journal, September 1984


SZ effects in the Magneticum Pathfinder simulation: comparison with the Planck , SPT, and ACT results
journal, August 2016

  • Dolag, K.; Komatsu, E.; Sunyaev, R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 463, Issue 2
  • DOI: 10.1093/mnras/stw2035

Testing cosmic geometry without dynamic distortions using voids
journal, December 2014

  • Hamaus, Nico; Sutter, P. M.; Lavaux, Guilhem
  • Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 12
  • DOI: 10.1088/1475-7516/2014/12/013

The MICE Grand Challenge lightcone simulation – II. Halo and galaxy catalogues
journal, August 2015

  • Crocce, M.; Castander, F. J.; Gaztañaga, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 453, Issue 2
  • DOI: 10.1093/mnras/stv1708

Fast estimation of polarization power spectra using correlation functions
journal, May 2004


Testing cosmology with a catalogue of voids in the BOSS galaxy surveys
journal, June 2016

  • Nadathur, Seshadri
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 1
  • DOI: 10.1093/mnras/stw1340

Revealing the Cosmic Web-dependent Halo Bias
journal, October 2017


The evolution of voids in the expanding universe
journal, July 1983

  • Hausman, M. A.; Olson, D. W.; Roth, B. D.
  • The Astrophysical Journal, Vol. 270
  • DOI: 10.1086/161128

Lensing measurements of the mass distribution in SDSS voids
journal, October 2015

  • Clampitt, Joseph; Jain, Bhuvnesh
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 4
  • DOI: 10.1093/mnras/stv2215

A halo bias function measured deeply into voids without stochasticity
journal, May 2014

  • Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Jeong, Donghui
  • Monthly Notices of the Royal Astronomical Society, Vol. 441, Issue 1
  • DOI: 10.1093/mnras/stu589

Voids in coupled scalar field cosmology: Voids in coupled scalar field cosmology
journal, December 2010


Spatial and dynamical properties of voids in a Λ cold dark matter universe
journal, November 2005


First results from the IllustrisTNG simulations: matter and galaxy clustering
journal, December 2017

  • Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 1
  • DOI: 10.1093/mnras/stx3304

Weak lensing by galaxy troughs in DES Science Verification data
journal, November 2015

  • Gruen, D.; Friedrich, O.; Amara, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 455, Issue 3
  • DOI: 10.1093/mnras/stv2506

Multipole analysis of redshift-space distortions around cosmic voids
journal, July 2017

  • Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice
  • Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 07
  • DOI: 10.1088/1475-7516/2017/07/014

Cosmic voids in coupled dark energy cosmologies: the impact of halo bias
journal, November 2015

  • Pollina, Giorgia; Baldi, Marco; Marulli, Federico
  • Monthly Notices of the Royal Astronomical Society, Vol. 455, Issue 3
  • DOI: 10.1093/mnras/stv2503

Clues on void evolution – I. Large-scale galaxy distributions around voids
journal, July 2013

  • Ceccarelli, L.; Paz, D.; Lares, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 434, Issue 2
  • DOI: 10.1093/mnras/stt1097

Constraints on Cosmology and Gravity from the Dynamics of Voids
journal, August 2016


redMaGiC: selecting luminous red galaxies from the DES Science Verification data
journal, May 2016

  • Rozo, E.; Rykoff, E. S.; Abate, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 2
  • DOI: 10.1093/mnras/stw1281

The Redshift Evolution of the mean Temperature, Pressure, and Entropy Profiles in 80 Spt-Selected Galaxy Clusters
journal, September 2014


Cross-correlation of galaxies and galaxy clusters in the Sloan Digital Sky Survey and the importance of non-Poissonian shot noise
journal, June 2017

  • Paech, Kerstin; Hamaus, Nico; Hoyle, Ben
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 3
  • DOI: 10.1093/mnras/stx1354

Cosmology with Void-Galaxy Correlations
journal, January 2014


The structure of cosmic voids in a ΛCDM Universe
journal, July 2013

  • Ricciardelli, E.; Quilis, V.; Planelles, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 434, Issue 2
  • DOI: 10.1093/mnras/stt1069

zobov: a parameter-free void-finding algorithm
journal, June 2008


A cosmic watershed: the WVF void detection technique
journal, September 2007


An Imprint of Superstructures on the Microwave Background due to the Integrated Sachs-Wolfe Effect
journal, July 2008

  • Granett, Benjamin R.; Neyrinck, Mark C.; Szapudi, István
  • The Astrophysical Journal, Vol. 683, Issue 2
  • DOI: 10.1086/591670

Cosmological simulations of black hole growth: AGN luminosities and downsizing
journal, June 2014

  • Hirschmann, M.; Dolag, K.; Saro, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 3
  • DOI: 10.1093/mnras/stu1023

Fast Cosmic Microwave Background Analyses via Correlation Functions
journal, February 2001

  • Szapudi, István; Prunet, Simon; Pogosyan, Dmitry
  • The Astrophysical Journal, Vol. 548, Issue 2
  • DOI: 10.1086/319105

The dark Energy Camera
journal, October 2015


A measurement of the Alcock–Paczyński effect using cosmic voids in the SDSS
journal, August 2014

  • Sutter, P. M.; Pisani, Alice; Wandelt, Benjamin D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 443, Issue 4
  • DOI: 10.1093/mnras/stu1392

The cosmological simulation code gadget-2
journal, December 2005


A Public void Catalog from the sdss dr7 Galaxy Redshift Surveys Based on the Watershed Transform
journal, November 2012

  • Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.
  • The Astrophysical Journal, Vol. 761, Issue 1
  • DOI: 10.1088/0004-637X/761/1/44

Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

Sparse sampling, galaxy bias, and voids
journal, June 2014

  • Sutter, P. M.; Lavaux, Guilhem; Hamaus, Nico
  • Monthly Notices of the Royal Astronomical Society, Vol. 442, Issue 1
  • DOI: 10.1093/mnras/stu893

A Detection of the Integrated Sachs–Wolfe Imprint of Cosmic Superstructures Using a Matched-Filter Approach
journal, October 2016


The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes
journal, July 2011

  • Blas, Diego; Lesgourgues, Julien; Tram, Thomas
  • Journal of Cosmology and Astroparticle Physics, Vol. 2011, Issue 07
  • DOI: 10.1088/1475-7516/2011/07/034

Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at $\boldsymbol {z=2}$
journal, February 2016

  • Steinborn, Lisa K.; Dolag, Klaus; Comerford, Julia M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 1
  • DOI: 10.1093/mnras/stw316

Dependence of halo bias on mass and environment
journal, September 2017

  • Shi, Jingjing; Sheth, Ravi K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 2
  • DOI: 10.1093/mnras/stx2277

Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations
journal, June 2015

  • Dolag, K.; Gaensler, B. M.; Beck, A. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 4
  • DOI: 10.1093/mnras/stv1190

The Dark Energy Survey: Data Release 1
journal, November 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Allam, S.
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 2
  • DOI: 10.3847/1538-4365/aae9f0

The Santiago–Harvard–Edinburgh–Durham void comparison – I. SHEDding light on chameleon gravity tests
journal, February 2018

  • Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan
  • Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 3
  • DOI: 10.1093/mnras/sty463

VIDE: The Void IDentification and Examination toolkit
journal, March 2015


Cosmic voids in Sloan Digital Sky Survey Data Release 7
journal, February 2012


A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations
journal, February 2015

  • Steinborn, Lisa K.; Dolag, Klaus; Hirschmann, Michaela
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 2
  • DOI: 10.1093/mnras/stv072

Clustering and bias measurements of SDSS voids
journal, January 2016

  • Clampitt, Joseph; Jain, Bhuvnesh; Sánchez, Carles
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 4
  • DOI: 10.1093/mnras/stv2933

Using cosmic voids to distinguish f ( R ) gravity in future galaxy surveys
journal, June 2015

  • Zivick, Paul; Sutter, P. M.; Wandelt, Benjamin D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 4
  • DOI: 10.1093/mnras/stv1209

Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology
journal, December 2015

  • Bocquet, Sebastian; Saro, Alex; Dolag, Klaus
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 3
  • DOI: 10.1093/mnras/stv2657

The persistent percolation of single-stream voids
journal, May 2015

  • Falck, B.; Neyrinck, M. C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 450, Issue 3
  • DOI: 10.1093/mnras/stv879

Voids in modified gravity: excursion set predictions
journal, March 2013

  • Clampitt, Joseph; Cai, Yan-Chuan; Li, Baojiu
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 1
  • DOI: 10.1093/mnras/stt219

SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL INTERPRETATION
journal, January 2011

  • Komatsu, E.; Smith, K. M.; Dunkley, J.
  • The Astrophysical Journal Supplement Series, Vol. 192, Issue 2
  • DOI: 10.1088/0067-0049/192/2/18

Redshift-space distortions around voids
journal, July 2016

  • Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 462, Issue 3
  • DOI: 10.1093/mnras/stw1809

The Difference Imaging Pipeline for the Transient Search in the dark Energy Survey
journal, November 2015


On the universality of void density profiles
journal, March 2014

  • Ricciardelli, E.; Quilis, V.; Varela, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 440, Issue 1
  • DOI: 10.1093/mnras/stu307

Strong clustering of underdense regions and the environmental dependence of clustering from Gaussian initial conditions
journal, June 2007


The nature of voids – I. Watershed void finders and their connection with theoretical models
journal, October 2015

  • Nadathur, S.; Hotchkiss, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 2
  • DOI: 10.1093/mnras/stv2131

Populating a cluster of galaxies - I. Results at \fontshape{it}{z}=0
journal, December 2001

  • Springel, Volker; White, Simon D. M.; Tormen, Giuseppe
  • Monthly Notices of the Royal Astronomical Society, Vol. 328, Issue 3
  • DOI: 10.1046/j.1365-8711.2001.04912.x

An evolution free test for non-zero cosmological constant
journal, October 1979

  • Alcock, Charles; Paczyński, Bohdan
  • Nature, Vol. 281, Issue 5730
  • DOI: 10.1038/281358a0

The Redmapper Galaxy Cluster Catalog from des Science Verification data
journal, May 2016

  • Rykoff, E. S.; Rozo, E.; Hollowood, D.
  • The Astrophysical Journal Supplement Series, Vol. 224, Issue 1
  • DOI: 10.3847/0067-0049/224/1/1

The abundance of voids and the excursion set formalism
journal, July 2013

  • Jennings, E.; Li, Y.; Hu, W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 434, Issue 3
  • DOI: 10.1093/mnras/stt1169

Cosmic voids and void lensing in the Dark Energy Survey Science Verification data
journal, October 2016

  • Sánchez, C.; Clampitt, J.; Kovacs, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 1
  • DOI: 10.1093/mnras/stw2745

Unveiling galaxy bias via the halo model, KiDS, and GAMA
journal, June 2018

  • Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad
  • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 1
  • DOI: 10.1093/mnras/sty1502

The VIMOS Public Extragalactic Redshift Survey: Measuring the growth rate of structure around cosmic voids⋆
journal, November 2017


Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
journal, October 2018

  • McClintock, T.; Varga, T. N.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2711

Universal Density Profile for Cosmic Voids
journal, June 2014


A survey of galaxy redshifts. V - The two-point position and velocity correlations
journal, April 1983

  • Davis, M.; Peebles, P. J. E.
  • The Astrophysical Journal, Vol. 267
  • DOI: 10.1086/160884

Voids in a ΛCDM universe
journal, June 2005

  • Colberg, Jörg M.; Sheth, Ravi K.; Diaferio, Antonaldo
  • Monthly Notices of the Royal Astronomical Society, Vol. 360, Issue 1
  • DOI: 10.1111/j.1365-2966.2005.09064.x

LSST: From Science Drivers to Reference Design and Anticipated Data Products
journal, March 2019

  • Ivezić, Željko; Kahn, Steven M.; Tyson, J. Anthony
  • The Astrophysical Journal, Vol. 873, Issue 2
  • DOI: 10.3847/1538-4357/ab042c

On the linearity of tracer bias around voids
journal, April 2017

  • Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 1
  • DOI: 10.1093/mnras/stx785

A million cubic megaparsec void in Bootes
journal, August 1981

  • Kirshner, R. P.; Oemler, A. , Jr.; Schechter, P. L.
  • The Astrophysical Journal, Vol. 248
  • DOI: 10.1086/183623

A Cosmic Void Catalog of SDSS DR12 BOSS Galaxies
journal, January 2017

  • Mao, Qingqing; Berlind, Andreas A.; Scherrer, Robert J.
  • The Astrophysical Journal, Vol. 835, Issue 2
  • DOI: 10.3847/1538-4357/835/2/161

Substructures in hydrodynamical cluster simulations
journal, October 2009


Robust Optical Richness Estimation with Reduced Scatter
journal, February 2012


Voids in massive neutrino cosmologies
journal, November 2015

  • Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo
  • Journal of Cosmology and Astroparticle Physics, Vol. 2015, Issue 11
  • DOI: 10.1088/1475-7516/2015/11/018

A Supervoid Explanation of the Cosmic Microwave Background Cold Spot
journal, May 2014

  • Finelli, F.; García-Bellido, J.; Kovács, A.
  • Proceedings of the International Astronomical Union, Vol. 10, Issue S306
  • DOI: 10.1017/S1743921314013714

Bias and variance of angular correlation functions
journal, July 1993

  • Landy, Stephen D.; Szalay, Alexander S.
  • The Astrophysical Journal, Vol. 412
  • DOI: 10.1086/172900

An accurate linear model for redshift space distortions in the void–galaxy correlation function
journal, December 2018

  • Nadathur, Seshadri; Percival, Will J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 3
  • DOI: 10.1093/mnras/sty3372