skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volumetric spherical polynomials

Authors:
ORCiD logo [1]
  1. Computer Science and Informatics, Idaho State University, Pocatello, Idaho 83209, USA and Center for Advanced Energy Studies (CAES), Idaho Falls, Idaho 83401, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1525906
Grant/Contract Number:  
17-SC-20-SC
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Name: AIP Advances Journal Volume: 9 Journal Issue: 6; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Kerby, L. Volumetric spherical polynomials. United States: N. p., 2019. Web. doi:10.1063/1.5086695.
Kerby, L. Volumetric spherical polynomials. United States. doi:10.1063/1.5086695.
Kerby, L. Sat . "Volumetric spherical polynomials". United States. doi:10.1063/1.5086695.
@article{osti_1525906,
title = {Volumetric spherical polynomials},
author = {Kerby, L.},
abstractNote = {},
doi = {10.1063/1.5086695},
journal = {AIP Advances},
number = 6,
volume = 9,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1063/1.5086695

Save / Share:

Works referenced in this record:

Advancement of functional expansion capabilities: Implementation and optimization in Serpent 2
journal, August 2018


Generalized Jacobi polynomials/functions and their applications
journal, May 2009


Preliminary Coupling of the Monte Carlo Code OpenMC and the Multiphysics Object-Oriented Simulation Environment for Analyzing Doppler Feedback in Monte Carlo Simulations
journal, January 2017

  • Ellis, Matthew; Gaston, Derek; Forget, Benoit
  • Nuclear Science and Engineering, Vol. 185, Issue 1
  • DOI: 10.13182/nse16-26