DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Composite boson signature in the interference pattern of atomic dimer condensates

Abstract

We predict the existence of high frequency modes in the interference pattern of two condensates made of fermionic-atom dimers. These modes, which result from fermion exchanges between condensates, constitute a striking signature of the dimer composite nature. From the 2-coboson spatial correlation function, that we derive analytically, and the Shiva diagrams that visualize many-body effects specific to composite bosons, we identify the physical origin of these high frequency modes and determine the conditions to see them experimentally by using bound fermionic-atom pairs trapped on optical lattice sites. The dimer granularity which appears in these modes comes from Pauli blocking that prevents two dimers to be located at the same lattice site.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]
  1. National Center for Theoretical Sciences, Hsinchu (Taiwan)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); IKERBASQUE, San Sebastian (Spain)
  3. Sorbonne Univ., Paris (France)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1525857
Report Number(s):
LA-UR-19-22025
Journal ID: ISSN 1367-2630
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
New Journal of Physics
Additional Journal Information:
Journal Volume: 21; Journal Issue: 4; Journal ID: ISSN 1367-2630
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; BEC; interference pattern; composite boson; atomic dimer; optical lattice

Citation Formats

Shiau, Shiue -Yuan, Chenu, Aurélia, and Combescot, Monique. Composite boson signature in the interference pattern of atomic dimer condensates. United States: N. p., 2019. Web. doi:10.1088/1367-2630/ab0cc6.
Shiau, Shiue -Yuan, Chenu, Aurélia, & Combescot, Monique. Composite boson signature in the interference pattern of atomic dimer condensates. United States. https://doi.org/10.1088/1367-2630/ab0cc6
Shiau, Shiue -Yuan, Chenu, Aurélia, and Combescot, Monique. Tue . "Composite boson signature in the interference pattern of atomic dimer condensates". United States. https://doi.org/10.1088/1367-2630/ab0cc6. https://www.osti.gov/servlets/purl/1525857.
@article{osti_1525857,
title = {Composite boson signature in the interference pattern of atomic dimer condensates},
author = {Shiau, Shiue -Yuan and Chenu, Aurélia and Combescot, Monique},
abstractNote = {We predict the existence of high frequency modes in the interference pattern of two condensates made of fermionic-atom dimers. These modes, which result from fermion exchanges between condensates, constitute a striking signature of the dimer composite nature. From the 2-coboson spatial correlation function, that we derive analytically, and the Shiva diagrams that visualize many-body effects specific to composite bosons, we identify the physical origin of these high frequency modes and determine the conditions to see them experimentally by using bound fermionic-atom pairs trapped on optical lattice sites. The dimer granularity which appears in these modes comes from Pauli blocking that prevents two dimers to be located at the same lattice site.},
doi = {10.1088/1367-2630/ab0cc6},
journal = {New Journal of Physics},
number = 4,
volume = 21,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Correlation function $\mathcal {G} ^{(2)}_{N,N'}$(R1, R2) defined in equation (6), in the absence of fermion exchanges. A dimer is destroyed and recreated from the same fermion pair at the same position with same momentum (a, b, c) or with different momenta (d), the total momentum being conserved. Themore » oscillatory cos($Q$ - $Q'$) · R12 term of equation (9) comes from(d). In Shiva diagrams, a coboson dimer is represented by a double line, the solid and dashed lines representing its two different fermionic atoms. See [34] for a detailed description of Shiva diagrams.« less

Save / Share:

Works referenced in this record:

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor
journal, July 1995


Bose-Einstein Condensation in a Gas of Sodium Atoms
journal, November 1995


Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
journal, August 1995


Vortices and superfluidity in a strongly interacting Fermi gas
journal, June 2005

  • Zwierlein, M. W.; Abo-Shaeer, J. R.; Schirotzek, A.
  • Nature, Vol. 435, Issue 7045
  • DOI: 10.1038/nature03858

Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate
journal, March 2005


Observation of Interference Between Two Bose Condensates
journal, January 1997


Coherent Collisions between Bose-Einstein Condensates
journal, January 2003


Interference of Bose-Einstein condensates split with an atom chip
journal, August 2005


The many-body physics of composite bosons
journal, July 2008


Weakly Bound Dimers of Fermionic Atoms
journal, August 2004


Scattering properties of weakly bound dimers of fermionic atoms
journal, January 2005


Dimer-dimer scattering length for fermions with different masses: Analytical study for large mass ratio
journal, February 2013


Correlated-pair approach to composite-boson scattering lengths
journal, November 2016


Experimental Study of the BEC-BCS Crossover Region in Lithium 6
journal, July 2004


"Dressed Excitons" in a Multiple-Quantum-Well Structure: Evidence for an Optical Stark Effect with Femtosecond Response Time
journal, June 1986


Excitonic optical Stark redshift: The biexciton signature
journal, December 1990


Semiconductors in strong laser fields: from polariton to exciton optical Stark effect
journal, November 1992


Evidence for a Bose-Einstein condensate of excitons
journal, July 2014


Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons
journal, March 2017


Bose-Einstein Condensation in Semiconductors: The Key Role of Dark Excitons
journal, October 2007


Collective Interference of Composite Two-Fermion Bosons
journal, December 2012


Molecules of Fermionic Atoms in an Optical Lattice
journal, January 2006


Preparation of a quantum state with one molecule at each site of an optical lattice
journal, September 2006

  • Volz, T.; Syassen, N.; Bauer, D. M.
  • Nature Physics, Vol. 2, Issue 10
  • DOI: 10.1038/nphys415

An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice
journal, February 2010

  • Danzl, Johann G.; Mark, Manfred J.; Haller, Elmar
  • Nature Physics, Vol. 6, Issue 4
  • DOI: 10.1038/nphys1533

Quantum Engineering of a Low-Entropy Gas of Heteronuclear Bosonic Molecules in an Optical Lattice
journal, February 2017


Creation of a low-entropy quantum gas of polar molecules in an optical lattice
journal, November 2015


New frontiers for quantum gases of polar molecules
journal, December 2016

  • Moses, Steven A.; Covey, Jacob P.; Miecnikowski, Matthew T.
  • Nature Physics, Vol. 13, Issue 1
  • DOI: 10.1038/nphys3985

Cold Bosonic Atoms in Optical Lattices
journal, October 1998


Microscopic derivation of Frenkel excitons in second quantization
journal, February 2008


Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties
journal, January 2005

  • Fallani, Leonardo; Fort, Chiara; Lye, Jessica E.
  • Optics Express, Vol. 13, Issue 11
  • DOI: 10.1364/OPEX.13.004303

Quantum Phase of a Bose-Einstein Condensate with an Arbitrary Number of Atoms
journal, January 1996


Phase and Phase Diffusion of a Split Bose-Einstein Condensate
journal, June 1997


Relative phase of two Bose-Einstein condensates
journal, June 1997


General Many-Body Formalism for Composite Quantum Particles
journal, May 2010


Spatial coherence and density correlations of trapped Bose gases
journal, June 1999


Bose-Einstein Condensation in a Gas of Sodium Atoms
conference, January 1996

  • Davis, K. B.; Mewes, M. -O.; Andrews, M. R.
  • EQEC'96. 1996 European Quantum Electronic Conference, EQEC 96 1996 European Quantum Electronic Conference EQEC-96
  • DOI: 10.1109/eqec.1996.561567

Bose-Einstein condensation in semiconductors: the key role of dark excitons
text, January 2007


Microscopic derivation of Frenkel excitons in second quantization
text, January 2007


Evidence for a Bose-Einstein condensate of excitons
text, January 2013


Quantized Vortices and Four-Component Superfluidity of Semiconductor Excitons
text, January 2016


Correlated Pair Approach to Composite Boson Scattering Lengths
text, January 2016


New frontiers with quantum gases of polar molecules
text, January 2016


Coherent Collisions between Bose-Einstein Condensates
text, January 2002


Weakly bound dimers of fermionic atoms
text, January 2003


Experimental Study of the BEC-BCS Crossover Region in Lithium 6
text, January 2004


Scattering properties of weakly bound dimers of fermionic atoms
text, January 2004


An Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate
text, January 2004


Molecules of Fermionic Atoms in an Optical Lattice
text, January 2005


Works referencing / citing this record:

Molecular interferometers: effects of Pauli principle on entangled-enhanced precision measurements
journal, December 2019

  • Bouvrie, P. Alexander; Majtey, Ana P.; Figueiredo, Francisco
  • New Journal of Physics, Vol. 21, Issue 12
  • DOI: 10.1088/1367-2630/ab5b2f

Description of composite bosons in discrete models
journal, July 2019


Molecular interferometers: effects of Pauli principle on entangled-enhanced precision measurements
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.