skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering porous organic polymers for carbon dioxide capture

Abstract

As atmospheric CO 2 levels rise, the development of physical or chemical adsorbents for CO 2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO 2 capture materials owing to their structural flexibility, high surface area, and high stability. We highlight high-performance porous organic polymers for CO 2 capture and summarize the strategies to enhance CO 2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO 2, and pore surface functionalization.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Texas A & M Univ., College Station, TX (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1525349
Grant/Contract Number:  
FE0026472
Resource Type:
Accepted Manuscript
Journal Name:
Science China Chemistry
Additional Journal Information:
Journal Volume: 60; Journal Issue: 8; Journal ID: ISSN 1674-7291
Publisher:
Science China Press and Springer
Country of Publication:
United States
Language:
English
Subject:
porous organic polymers; CO2 capture; nanomaterials; post-synthesis; polymer

Citation Formats

Huang, Ning, Day, Gregory, Yang, Xinyu, Drake, Hannah, and Zhou, Hong-Cai. Engineering porous organic polymers for carbon dioxide capture. United States: N. p., 2017. Web. doi:10.1007/s11426-017-9084-7.
Huang, Ning, Day, Gregory, Yang, Xinyu, Drake, Hannah, & Zhou, Hong-Cai. Engineering porous organic polymers for carbon dioxide capture. United States. doi:10.1007/s11426-017-9084-7.
Huang, Ning, Day, Gregory, Yang, Xinyu, Drake, Hannah, and Zhou, Hong-Cai. Wed . "Engineering porous organic polymers for carbon dioxide capture". United States. doi:10.1007/s11426-017-9084-7. https://www.osti.gov/servlets/purl/1525349.
@article{osti_1525349,
title = {Engineering porous organic polymers for carbon dioxide capture},
author = {Huang, Ning and Day, Gregory and Yang, Xinyu and Drake, Hannah and Zhou, Hong-Cai},
abstractNote = {As atmospheric CO2 levels rise, the development of physical or chemical adsorbents for CO2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO2 capture materials owing to their structural flexibility, high surface area, and high stability. We highlight high-performance porous organic polymers for CO2 capture and summarize the strategies to enhance CO2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO2, and pore surface functionalization.},
doi = {10.1007/s11426-017-9084-7},
journal = {Science China Chemistry},
number = 8,
volume = 60,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray
journal, April 2008

  • Stolaroff, Joshuah K.; Keith, David W.; Lowry, Gregory V.
  • Environmental Science & Technology, Vol. 42, Issue 8
  • DOI: 10.1021/es702607w

CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor
journal, February 2009


Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere
journal, January 2012

  • Goeppert, Alain; Czaun, Miklos; Surya Prakash, G. K.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21586a

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

An overview of activated carbons utilization for the post-combustion carbon dioxide capture
journal, March 2016


An Ultrahigh Pore Volume Drives Up the Amine Stability and Cyclic CO 2 Capacity of a Solid-Amine@Carbon Sorbent
journal, July 2015

  • Gadipelli, Srinivas; Patel, Hasmukh A.; Guo, Zhengxiao
  • Advanced Materials, Vol. 27, Issue 33
  • DOI: 10.1002/adma.201502047

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity
journal, January 2009

  • Chen, Chao; Yang, Seung-Tae; Ahn, Wha-Seung
  • Chemical Communications, Issue 24
  • DOI: 10.1039/b905589d

Beyond pristine MOFs: carbon dioxide capture by metal–organic frameworks (MOFs)-derived porous carbon materials
journal, January 2017

  • Kim, Hye Ryeon; Yoon, Tae-Ung; Kim, Seung-Ik
  • RSC Advances, Vol. 7, Issue 3
  • DOI: 10.1039/C6RA26824B

CO2 Capture by a Task-Specific Ionic Liquid
journal, February 2002

  • Bates, Eleanor D.; Mayton, Rebecca D.; Ntai, Ioanna
  • Journal of the American Chemical Society, Vol. 124, Issue 6, p. 926-927
  • DOI: 10.1021/ja017593d

Polyamine-Tethered Porous Polymer Networks for Carbon Dioxide Capture from Flue Gas
journal, June 2012

  • Lu, Weigang; Sculley, Julian P.; Yuan, Daqiang
  • Angewandte Chemie International Edition, Vol. 51, Issue 30, p. 7480-7484
  • DOI: 10.1002/anie.201202176

Conjugated Microporous Polymers
journal, March 2009


Conjugated microporous polymers: design, synthesis and application
journal, January 2013

  • Xu, Yanhong; Jin, Shangbin; Xu, Hong
  • Chemical Society Reviews, Vol. 42, Issue 20
  • DOI: 10.1039/c3cs60160a

Dispelling some myths about the CO 2 solubility in ionic liquids
journal, January 2016

  • Carvalho, P. J.; Kurnia, K. A.; Coutinho, J. A. P.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 22
  • DOI: 10.1039/C6CP01896C

Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage
journal, January 2006

  • McKeown, Neil B.; Budd, Peter M.
  • Chemical Society Reviews, Vol. 35, Issue 8, p. 675-683
  • DOI: 10.1039/b600349d

Highly Selective CO2-Capturing Polymeric Organic Network Structures
journal, January 2012

  • Jeon, Hyung Joon; Choi, Jung Hoon; Lee, Yeob
  • Advanced Energy Materials, Vol. 2, Issue 2
  • DOI: 10.1002/aenm.201100648

Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer
journal, July 2009

  • Farha, Omar K.; Spokoyny, Alexander M.; Hauser, Brad G.
  • Chemistry of Materials, Vol. 21, Issue 14
  • DOI: 10.1021/cm901280w

Phosphonium salt incorporated hypercrosslinked porous polymers for CO 2 capture and conversion
journal, January 2015

  • Wang, Jinquan; Wei Yang, Jason Gan; Yi, Guangshun
  • Chemical Communications, Vol. 51, Issue 86
  • DOI: 10.1039/C5CC06295K

Charged Covalent Triazine Frameworks for CO 2 Capture and Conversion
journal, February 2017

  • Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 8
  • DOI: 10.1021/acsami.6b16769

Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities
journal, July 2011


Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO 2 Capture and H 2 Storage
journal, April 2011

  • Rabbani, Mohammad G.; El-Kaderi, Hani M.
  • Chemistry of Materials, Vol. 23, Issue 7
  • DOI: 10.1021/cm200411p

Carbon dioxide capture in amorphous porous organic polymers
journal, January 2017

  • Wang, Wenjing; Zhou, Mi; Yuan, Daqiang
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/C6TA09234A

Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane
journal, June 2014

  • Li, Baiyan; Zhang, Yiming; Krishna, Rajamani
  • Journal of the American Chemical Society, Vol. 136, Issue 24
  • DOI: 10.1021/ja502119z

Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009

  • Ben, Teng; Ren, Hao; Ma, Shengqian
  • Angewandte Chemie International Edition, Vol. 48, Issue 50, p. 9457-9460
  • DOI: 10.1002/anie.200904637

High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry
journal, October 2010

  • Holst, James R.; Stöckel, Ev; Adams, Dave J.
  • Macromolecules, Vol. 43, Issue 20
  • DOI: 10.1021/ma101677t

Triptycene-Based Microporous Polymers: Synthesis and Their Gas Storage Properties
journal, December 2011

  • Zhang, Chun; Liu, Ying; Li, Buyi
  • ACS Macro Letters, Vol. 1, Issue 1
  • DOI: 10.1021/mz200076c

Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture
journal, January 2011

  • Martín, Claudia F.; Stöckel, Ev; Clowes, Rob
  • Journal of Materials Chemistry, Vol. 21, Issue 14
  • DOI: 10.1039/c0jm03534c

Chemical tuning of CO2 sorption in robust nanoporous organic polymers
journal, January 2011

  • Dawson, Robert; Adams, Dave J.; Cooper, Andrew I.
  • Chemical Science, Vol. 2, Issue 6
  • DOI: 10.1039/c1sc00100k

Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure
journal, November 2011

  • Lu, Weigang; Yuan, Daqiang; Sculley, Julian
  • Journal of the American Chemical Society, Vol. 133, Issue 45, p. 18126-18129
  • DOI: 10.1021/ja2087773

Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization
journal, January 2015

  • Huang, Ning; Chen, Xiong; Krishna, Rajamani
  • Angewandte Chemie International Edition, Vol. 54, Issue 10
  • DOI: 10.1002/anie.201411262

High CO 2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers
journal, January 2012

  • Rabbani, Mohammad Gulam; Reich, Thomas E.; Kassab, Refaie M.
  • Chem. Commun., Vol. 48, Issue 8
  • DOI: 10.1039/C2CC16986J

Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide
journal, July 2011

  • Mohanty, Paritosh; Kull, Lilian D.; Landskron, Kai
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1405

Synthesis of microporous polymers by Friedel–Crafts reaction of 1-bromoadamantane with aromatic compounds and their surface modification
journal, January 2012

  • Lim, Ho; Cha, Min Chul; Chang, Ji Young
  • Polymer Chemistry, Vol. 3, Issue 4
  • DOI: 10.1039/c2py00511e

Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation
journal, March 2012

  • Chen, Qi; Luo, Min; Hammershøj, Peter
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja300438w

Phloroglucinol Based Microporous Polymeric Organic Frameworks with −OH Functional Groups and High CO 2 Capture Capacity
journal, April 2011

  • Katsoulidis, Alexandros P.; Kanatzidis, Mercouri G.
  • Chemistry of Materials, Vol. 23, Issue 7
  • DOI: 10.1021/cm103206x

Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening
journal, June 2015

  • Huang, Ning; Krishna, Rajamani; Jiang, Donglin
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b04300

Cost-Effective Synthesis of Amine-Tethered Porous Materials for Carbon Capture
journal, October 2014


Copper(I)-Catalyzed Synthesis of Nanoporous Azo-Linked Polymers: Impact of Textural Properties on Gas Storage and Selective Carbon Dioxide Capture
journal, January 2014

  • Arab, Pezhman; Rabbani, Mohammad Gulam; Sekizkardes, Ali Kemal
  • Chemistry of Materials, Vol. 26, Issue 3
  • DOI: 10.1021/cm403161e

Rational design and synthesis of a porous, task-specific polycarbazole for efficient CO 2 capture
journal, January 2016

  • Jin, Tian; Xiong, Yan; Zhu, Xiang
  • Chemical Communications, Vol. 52, Issue 24
  • DOI: 10.1039/C6CC00573J

Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups
journal, January 2014

  • Zhu, Xiang; Mahurin, Shannon M.; An, Shu-Hao
  • Chemical Communications, Vol. 50, Issue 59
  • DOI: 10.1039/c4cc01588f

High CO 2 -Capture Ability of a Porous Organic Polymer Bifunctionalized with Carboxy and Triazole Groups
journal, July 2013

  • Xie, Lin-Hua; Suh, Myunghyun Paik
  • Chemistry - A European Journal, Vol. 19, Issue 35
  • DOI: 10.1002/chem.201301822

In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO 2 Capture Performance
journal, September 2016

  • Zhu, Xiang; Tian, Chengcheng; Veith, Gabriel M.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b07644

Nitrogen-rich conjugated microporous polymers: impact of building blocks on porosity and gas adsorption
journal, January 2015

  • Wang, Xiaoyan; Zhao, Yang; Wei, Lingling
  • Journal of Materials Chemistry A, Vol. 3, Issue 42
  • DOI: 10.1039/C5TA05230K

Synthesis of covalent triazine-based frameworks with high CO 2 adsorption and selectivity
journal, January 2015

  • Gu, Chunyang; Liu, Deyu; Huang, Wei
  • Polymer Chemistry, Vol. 6, Issue 42
  • DOI: 10.1039/C5PY01090J

Highly Selective CO 2 Capture by Triazine-Based Benzimidazole-Linked Polymers
journal, November 2014

  • Sekizkardes, Ali Kemal; Altarawneh, Suha; Kahveci, Zafer
  • Macromolecules, Vol. 47, Issue 23
  • DOI: 10.1021/ma502071w

Nitrogen-rich diaminotriazine-based porous organic polymers for small gas storage and selective uptake
journal, January 2013

  • Song, Wei-Chao; Xu, Xiao-Kang; Chen, Qiang
  • Polymer Chemistry, Vol. 4, Issue 17
  • DOI: 10.1039/c3py00590a

Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO 2 capture
journal, January 2016

  • Chen, Dongyang; Gu, Shuai; Fu, Yu
  • Polymer Chemistry, Vol. 7, Issue 20
  • DOI: 10.1039/C6PY00278A

Triazatriangulenium-based porous organic polymers for carbon dioxide capture
journal, January 2015

  • Hu, Xin-Ming; Chen, Qi; Sui, Zhu-Yin
  • RSC Advances, Vol. 5, Issue 109
  • DOI: 10.1039/C5RA18047C

Synthesis and Characterization of Porous Benzimidazole-Linked Polymers and Their Performance in Small Gas Storage and Selective Uptake
journal, April 2012

  • Rabbani, Mohammad Gulam; El-Kaderi, Hani M.
  • Chemistry of Materials, Vol. 24, Issue 8
  • DOI: 10.1021/cm300407h

Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents
journal, June 2012

  • Dawson, Robert; Stevens, Lee A.; Drage, Trevor C.
  • Journal of the American Chemical Society, Vol. 134, Issue 26
  • DOI: 10.1021/ja301926h

Hypercrosslinked porous polymer materials: design, synthesis, and applications
journal, January 2017

  • Tan, Liangxiao; Tan, Bien
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C6CS00851H

A novel metalporphyrin-based microporous organic polymer with high CO 2 uptake and efficient chemical conversion of CO 2 under ambient conditions
journal, January 2017

  • Wang, Shaolei; Song, Kunpeng; Zhang, Chengxin
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/C6TA08556C

Indolo[3,2-b]carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation
journal, July 2016


    Works referencing / citing this record:

    Direct synthesis of an aliphatic amine functionalized metal–organic framework for efficient CO 2 removal and CH 4 purification
    journal, January 2018

    • Huang, Ning-Yu; Mo, Zong-Wen; Li, Lu-Jian
    • CrystEngComm, Vol. 20, Issue 39
    • DOI: 10.1039/c8ce00574e