DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows

Abstract

We introduce atomate, an open-source Python framework for computational materials science simulation, analysis, and design with an emphasis on automation and extensibility. Built on top of open source Python packages already in use by the materials community such as pymatgen, FireWorks, and custodian, atomate provides well-tested workflow templates to compute various materials properties such as electronic bandstructure, elastic properties, and piezoelectric, dielectric, and ferroelectric properties. Atomate also enables the computational characterization of materials by providing workflows that calculate X-ray absorption (XAS), Electron energy loss (EELS) and Raman spectra. One of the major features of atomate is that it provides both fully functional workflows as well as reusable components that enable one to compose complex materials science workflows that use a diverse set of computational tools. Additionally, atomate creates output databases that organize the results from individual calculations and contains a builder framework that creates summary reports for each computed material based on multiple simulations.

Authors:
 [1];  [2];  [2];  [2];  [2];  [3];  [3];  [4];  [5];  [2];  [2];  [6];  [5];  [4];  [3];  [1];  [2]
  1. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); University of California, Berkeley, CA (United States)
  2. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  3. University of California, San Diego, CA (United States)
  4. University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States)
  5. Pennsylvania State University, University Park, PA (United States)
  6. University of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Next Generation of Materials by Design: Incorporating Metastability (CNGMD); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1525252
Alternate Identifier(s):
OSTI ID: 1495847
Grant/Contract Number:  
AC02-05CH11231; 1640899; EDCBEE; DGE-1449785; AC36-08GO28308; 1550423; ACI-1053575; AC02 05CH11231; AC0205CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Computational Materials Science
Additional Journal Information:
Journal Volume: 139; Journal Issue: C; Journal ID: ISSN 0927-0256
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Mathew, Kiran, Montoya, Joseph H., Faghaninia, Alireza, Dwarakanath, Shyam, Aykol, Muratahan, Tang, Hanmei, Chu, Iek-heng, Smidt, Tess, Bocklund, Brandon, Horton, Matthew, Dagdelen, John, Wood, Brandon, Liu, Zi-Kui, Neaton, Jeffrey, Ong, Shyue Ping, Persson, Kristin, and Jain, Anubhav. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. United States: N. p., 2017. Web. doi:10.1016/j.commatsci.2017.07.030.
Mathew, Kiran, Montoya, Joseph H., Faghaninia, Alireza, Dwarakanath, Shyam, Aykol, Muratahan, Tang, Hanmei, Chu, Iek-heng, Smidt, Tess, Bocklund, Brandon, Horton, Matthew, Dagdelen, John, Wood, Brandon, Liu, Zi-Kui, Neaton, Jeffrey, Ong, Shyue Ping, Persson, Kristin, & Jain, Anubhav. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. United States. https://doi.org/10.1016/j.commatsci.2017.07.030
Mathew, Kiran, Montoya, Joseph H., Faghaninia, Alireza, Dwarakanath, Shyam, Aykol, Muratahan, Tang, Hanmei, Chu, Iek-heng, Smidt, Tess, Bocklund, Brandon, Horton, Matthew, Dagdelen, John, Wood, Brandon, Liu, Zi-Kui, Neaton, Jeffrey, Ong, Shyue Ping, Persson, Kristin, and Jain, Anubhav. Fri . "Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows". United States. https://doi.org/10.1016/j.commatsci.2017.07.030. https://www.osti.gov/servlets/purl/1525252.
@article{osti_1525252,
title = {Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows},
author = {Mathew, Kiran and Montoya, Joseph H. and Faghaninia, Alireza and Dwarakanath, Shyam and Aykol, Muratahan and Tang, Hanmei and Chu, Iek-heng and Smidt, Tess and Bocklund, Brandon and Horton, Matthew and Dagdelen, John and Wood, Brandon and Liu, Zi-Kui and Neaton, Jeffrey and Ong, Shyue Ping and Persson, Kristin and Jain, Anubhav},
abstractNote = {We introduce atomate, an open-source Python framework for computational materials science simulation, analysis, and design with an emphasis on automation and extensibility. Built on top of open source Python packages already in use by the materials community such as pymatgen, FireWorks, and custodian, atomate provides well-tested workflow templates to compute various materials properties such as electronic bandstructure, elastic properties, and piezoelectric, dielectric, and ferroelectric properties. Atomate also enables the computational characterization of materials by providing workflows that calculate X-ray absorption (XAS), Electron energy loss (EELS) and Raman spectra. One of the major features of atomate is that it provides both fully functional workflows as well as reusable components that enable one to compose complex materials science workflows that use a diverse set of computational tools. Additionally, atomate creates output databases that organize the results from individual calculations and contains a builder framework that creates summary reports for each computed material based on multiple simulations.},
doi = {10.1016/j.commatsci.2017.07.030},
journal = {Computational Materials Science},
number = C,
volume = 139,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:

Citation Metrics:
Cited by: 150 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al
journal, February 2010


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


A beginner's guide to the modern theory of polarization
journal, November 2012


Computational predictions of energy materials using density functional theory
journal, January 2016


The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
journal, August 2011

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz200866s

Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

Raman vibrational spectra of bulk to monolayer Re S 2 with lower symmetry
journal, August 2015


Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol
journal, March 2014

  • Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1873

FireWorks: a dynamic workflow system designed for high-throughput applications: FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications
journal, May 2015

  • Jain, Anubhav; Ong, Shyue Ping; Chen, Wei
  • Concurrency and Computation: Practice and Experience, Vol. 27, Issue 17
  • DOI: 10.1002/cpe.3505

Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

The Computational Materials Repository
journal, November 2012

  • Landis, David D.; Hummelshoj, Jens S.; Nestorov, Svetlozar
  • Computing in Science & Engineering, Vol. 14, Issue 6
  • DOI: 10.1109/MCSE.2012.16

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Managing the Computational Chemistry Big Data Problem: The ioChem-BD Platform
journal, December 2014

  • Álvarez-Moreno, M.; de Graaf, C.; López, N.
  • Journal of Chemical Information and Modeling, Vol. 55, Issue 1
  • DOI: 10.1021/ci500593j

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Automated Search for New Thermoelectric Materials: The Case of LiZnSb
journal, September 2006

  • Madsen, Georg K. H.
  • Journal of the American Chemical Society, Vol. 128, Issue 37
  • DOI: 10.1021/ja062526a

Identification of cathode materials for lithium batteries guided by first-principles calculations
journal, April 1998

  • Ceder, G.; Chiang, Y. -M.; Sadoway, D. R.
  • Nature, Vol. 392, Issue 6677
  • DOI: 10.1038/33647

A high-throughput framework for determining adsorption energies on solid surfaces
journal, March 2017


AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion
journal, January 2017


AFLOW: An automatic framework for high-throughput materials discovery
journal, June 2012


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


Parameter-free calculations of X-ray spectra with FEFF9
journal, January 2010

  • Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b926434e

First-principles phonon calculations of thermal expansion in Ti 3 SiC 2 , Ti 3 AlC 2 , and Ti 3 GeC 2
journal, May 2010


BoltzTraP. A code for calculating band-structure dependent quantities
journal, July 2006


Matplotlib: A 2D Graphics Environment
journal, January 2007


Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations
journal, December 2013

  • Sosso, Gabriele C.; Miceli, Giacomo; Caravati, Sebastiano
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 24
  • DOI: 10.1021/jz402268v

GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model
journal, March 2004


High-pressure synthesis of rhombohedral α-AgGaO2 via direct solid state reaction
journal, August 2015


Improved initial guess for minimum energy path calculations
journal, June 2014

  • Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
  • The Journal of Chemical Physics, Vol. 140, Issue 21
  • DOI: 10.1063/1.4878664

Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics
journal, April 2010


Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

A database to enable discovery and design of piezoelectric materials
journal, September 2015

  • de Jong, Maarten; Chen, Wei; Geerlings, Henry
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.53

An object-oriented scripting interface to a legacy electronic structure code
journal, January 2002

  • Bahn, S. R.; Jacobsen, K. W.
  • Computing in Science & Engineering, Vol. 4, Issue 3
  • DOI: 10.1109/5992.998641

First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties
journal, January 2010


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


Works referencing / citing this record:

2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches
journal, June 2019


High-throughput computation and evaluation of raman spectra
journal, July 2019