skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on May 15, 2020

Title: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses

Abstract

The identity of the dominant microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools, sequester carbon and withstand the impacts of climate change. Characterizing the global distribution of symbioses, and identifying the factors that control it, are thus integral to understanding present and future forest ecosystem functioning. In this work we generate the first spatially explicit global map of forest symbiotic status using a database of over 1.1 million forest inventory plots with over 28,000 tree species. Our analyses indicate that climatic variables, and in particular climatically-controlled variation in decomposition rate, are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal (EM) trees, which represent only 2% of all plant species, constitute approximately 60% of tree stems on Earth. EM symbiosis dominates forests where seasonally cold and dry climates inhibit decomposition, and are the predominant symbiosis at high latitudes and elevation. On the other hand, arbuscular mycorrhizal (AM) trees dominate aseasonally warm tropical forests and occur with EM trees in temperate biomes where seasonally warm-and-wet climates enhance decomposition. Continental transitions between AM and EM dominated forests occur relatively abruptly along climate driven decomposition gradients, whichmore » is likely caused by positive plant-microbe feedbacks. Symbiotic N-fixers, which are insensitive to climatic controls on decomposition compared with mycorrhizal fungi, are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient we document represents the first spatially-explicit, quantitative understanding of microbial symbioses at the global scale and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.« less

Authors:
 [1];  [2];  [3];  [1];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [11];  [2];  [1]
  1. Stanford Univ., CA (United States)
  2. Swiss Federal Institute of Technology (ETH), Zürich (Switzerland)
  3. Purdue Univ., West Lafayette, IN (United States); Beijing Forestry Univ. (China)
  4. Univ. of Oxford (United Kingdom)
  5. Univ. of Minnesota, Minneapolis, MN (United States); Univ. of Western Sydney, NSW (Australia). Hawkesbury Inst. for the Environment
  6. Wageningen Univ. (Netherlands)
  7. Univ. of Lleida (Spain); Forest Science and Technology Centre of Catalonia (CTFC), Solsona (Spain)
  8. Purdue Univ., West Lafayette, IN (United States)
  9. Food and Agriculture Organization of the United Nations, Rome (Italy)
  10. Univ. of Montpellier (France); Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro (Côte d’Ivoire)
  11. Beijing Forestry Univ. (China)
Publication Date:
Research Org.:
Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
Contributing Org.:
GFBI consortium
OSTI Identifier:
1524787
Grant/Contract Number:  
SC0016097
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 569; Journal Issue: 7756; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., and Peay, K. G. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1128-0.
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., & Peay, K. G. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. United States. doi:10.1038/s41586-019-1128-0.
Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., de-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., and Peay, K. G. Wed . "Climatic controls of decomposition drive the global biogeography of forest-tree symbioses". United States. doi:10.1038/s41586-019-1128-0.
@article{osti_1524787,
title = {Climatic controls of decomposition drive the global biogeography of forest-tree symbioses},
author = {Steidinger, B. S. and Crowther, T. W. and Liang, J. and Van Nuland, M. E. and Werner, G. D. A. and Reich, P. B. and Nabuurs, G. and de-Miguel, S. and Zhou, M. and Picard, N. and Herault, B. and Zhao, X. and Zhang, C. and Routh, D. and Peay, K. G.},
abstractNote = {The identity of the dominant microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools, sequester carbon and withstand the impacts of climate change. Characterizing the global distribution of symbioses, and identifying the factors that control it, are thus integral to understanding present and future forest ecosystem functioning. In this work we generate the first spatially explicit global map of forest symbiotic status using a database of over 1.1 million forest inventory plots with over 28,000 tree species. Our analyses indicate that climatic variables, and in particular climatically-controlled variation in decomposition rate, are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal (EM) trees, which represent only 2% of all plant species, constitute approximately 60% of tree stems on Earth. EM symbiosis dominates forests where seasonally cold and dry climates inhibit decomposition, and are the predominant symbiosis at high latitudes and elevation. On the other hand, arbuscular mycorrhizal (AM) trees dominate aseasonally warm tropical forests and occur with EM trees in temperate biomes where seasonally warm-and-wet climates enhance decomposition. Continental transitions between AM and EM dominated forests occur relatively abruptly along climate driven decomposition gradients, which is likely caused by positive plant-microbe feedbacks. Symbiotic N-fixers, which are insensitive to climatic controls on decomposition compared with mycorrhizal fungi, are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient we document represents the first spatially-explicit, quantitative understanding of microbial symbioses at the global scale and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.},
doi = {10.1038/s41586-019-1128-0},
journal = {Nature (London)},
number = 7756,
volume = 569,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 15, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Key role of symbiotic dinitrogen fixation in tropical forest secondary succession
journal, September 2013

  • Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel
  • Nature, Vol. 502, Issue 7470
  • DOI: 10.1038/nature12525

Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors
journal, November 2015

  • Shah, Firoz; Nicolás, César; Bentzer, Johan
  • New Phytologist, Vol. 209, Issue 4
  • DOI: 10.1111/nph.13722

Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage
journal, January 2014

  • Averill, Colin; Turner, Benjamin L.; Finzi, Adrien C.
  • Nature, Vol. 505, Issue 7484
  • DOI: 10.1038/nature12901

Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest
journal, March 2013


Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function
journal, December 2016

  • Cheeke, Tanya E.; Phillips, Richard P.; Brzostek, Edward R.
  • New Phytologist, Vol. 214, Issue 1
  • DOI: 10.1111/nph.14343

Mycorrhizal association as a primary control of the CO 2 fertilization effect
journal, June 2016


Evolutionary history of mycorrhizal symbioses and global host plant diversity
journal, January 2018

  • Brundrett, Mark C.; Tedersoo, Leho
  • New Phytologist, Vol. 220, Issue 4
  • DOI: 10.1111/nph.14976

Ectomycorrhizal fungi slow soil carbon cycling
journal, June 2016

  • Averill, Colin; Hawkes, Christine V.
  • Ecology Letters, Vol. 19, Issue 8
  • DOI: 10.1111/ele.12631

Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics
journal, January 2017

  • Bennett, Jonathan A.; Maherali, Hafiz; Reinhart, Kurt O.
  • Science, Vol. 355, Issue 6321
  • DOI: 10.1126/science.aai8212

The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests
journal, April 2013

  • Phillips, Richard P.; Brzostek, Edward; Midgley, Meghan G.
  • New Phytologist, Vol. 199, Issue 1
  • DOI: 10.1111/nph.12221

Mapping tree density at a global scale
journal, September 2015

  • Crowther, T. W.; Glick, H. B.; Covey, K. R.
  • Nature, Vol. 525, Issue 7568
  • DOI: 10.1038/nature14967

Mycorrhizal ecology and evolution: the past, the present, and the future
journal, February 2015

  • van der Heijden, Marcel G. A.; Martin, Francis M.; Selosse, Marc-André
  • New Phytologist, Vol. 205, Issue 4
  • DOI: 10.1111/nph.13288

Biogeochemistry of Adjacent Conifer and Alder-Conifer Stands
journal, December 1992

  • Binkley, Dan; Sollins, Phillip; Bell, Randy
  • Ecology, Vol. 73, Issue 6
  • DOI: 10.2307/1941452

Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning
journal, August 2004

  • Leake, Jonathan; Johnson, David; Donnelly, Damian
  • Canadian Journal of Botany, Vol. 82, Issue 8
  • DOI: 10.1139/b04-060

The Nitrogen Paradox in Tropical Forest Ecosystems
journal, December 2009


Mycorrhizas in ecosystems
journal, April 1991


A unifying framework for dinitrogen fixation in the terrestrial biosphere
journal, June 2008

  • Houlton, Benjamin Z.; Wang, Ying-Ping; Vitousek, Peter M.
  • Nature, Vol. 454, Issue 7202
  • DOI: 10.1038/nature07028

The Mutualistic Niche: Mycorrhizal Symbiosis and Community Dynamics
journal, November 2016


Aridity, not fire, favors nitrogen-fixing plants across tropical savanna and forest biomes
journal, September 2016

  • Pellegrini, Adam F. A.; Staver, A. Carla; Hedin, Lars O.
  • Ecology, Vol. 97, Issue 9
  • DOI: 10.1002/ecy.1504

Leaf litter decomposition—Estimates of global variability based on Yasso07 model
journal, December 2009


Evolutionary history resolves global organization of root functional traits
journal, February 2018


Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling
journal, January 2019


Catastrophic shifts in ecosystems
journal, October 2001

  • Scheffer, Marten; Carpenter, Steve; Foley, Jonathan A.
  • Nature, Vol. 413, Issue 6856
  • DOI: 10.1038/35098000

Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species
journal, January 2015

  • Reich, Peter B.; Sendall, Kerrie M.; Rice, Karen
  • Nature Climate Change, Vol. 5, Issue 2
  • DOI: 10.1038/nclimate2497

Scaling of C:N:P Stoichiometry in Forests Worldwide: Implications of Terrestrial Redfield-Type Ratios
journal, September 2004

  • McGroddy, Megan E.; Daufresne, Tanguy; Hedin, Lars O.
  • Ecology, Vol. 85, Issue 9
  • DOI: 10.1890/03-0351

Global patterns of plant leaf N and P in relation to temperature and latitude
journal, June 2004

  • Reich, P. B.; Oleksyn, J.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 30
  • DOI: 10.1073/pnas.0403588101

An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest
journal, February 2016

  • Corrales, Adriana; Mangan, Scott A.; Turner, Benjamin L.
  • Ecology Letters, Vol. 19, Issue 4
  • DOI: 10.1111/ele.12570

Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance
journal, August 2014

  • Menge, Duncan N. L.; Lichstein, Jeremy W.; Ángeles-Pérez, Gregorio
  • Ecology, Vol. 95, Issue 8
  • DOI: 10.1890/13-2124.1

Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America
journal, May 2017

  • Liao, Wenying; Menge, Duncan N. L.; Lichstein, Jeremy W.
  • Global Change Biology, Vol. 23, Issue 11
  • DOI: 10.1111/gcb.13716

Legume abundance along successional and rainfall gradients in Neotropical forests
journal, May 2018

  • Gei, Maga; Rozendaal, Danaë M. A.; Poorter, Lourens
  • Nature Ecology & Evolution, Vol. 2, Issue 7
  • DOI: 10.1038/s41559-018-0559-6

Positive biodiversity-productivity relationship predominant in global forests
journal, October 2016


taxize: taxonomic search and retrieval in R
journal, January 2013


A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms
journal, June 2014

  • Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5087

Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism
journal, June 2015

  • Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 33
  • DOI: 10.1073/pnas.1424030112

Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera
journal, January 2018

  • Afkhami, Michelle E.; Luke Mahler, D.; Burns, Jean H.
  • Ecology, Vol. 99, Issue 2
  • DOI: 10.1002/ecy.2110

Global database of plants with root-symbiotic nitrogen fixation: NodDB
journal, May 2018

  • Tedersoo, Leho; Laanisto, Lauri; Rahimlou, Saleh
  • Journal of Vegetation Science, Vol. 29, Issue 3
  • DOI: 10.1111/jvs.12627

Plant adaptations to severely phosphorus-impoverished soils
journal, June 2015


Phylogenetic distribution and evolution of mycorrhizas in land plants
journal, May 2006


Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms.
journal, March 1995

  • Soltis, D. E.; Soltis, P. S.; Morgan, D. R.
  • Proceedings of the National Academy of Sciences, Vol. 92, Issue 7
  • DOI: 10.1073/pnas.92.7.2647

Climate fails to predict wood decomposition at regional scales
journal, June 2014

  • Bradford, Mark A.; Warren II, Robert J.; Baldrian, Petr
  • Nature Climate Change, Vol. 4, Issue 7
  • DOI: 10.1038/nclimate2251

A dataset of forest biomass structure for Eurasia
journal, May 2017

  • Schepaschenko, Dmitry; Shvidenko, Anatoly; Usoltsev, Vladimir
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.70

    Works referencing / citing this record:

    Constraining Carbon and Nutrient Flows in Soil With Ecological Stoichiometry
    journal, October 2019

    • Buchkowski, Robert W.; Shaw, Alanna N.; Sihi, Debjani
    • Frontiers in Ecology and Evolution, Vol. 7
    • DOI: 10.3389/fevo.2019.00382