skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superlattice by charged block copolymer self-assembly

Abstract

Charged block copolymers are of great interest due to their unique self-assembly and physicochemical properties. Understanding of the phase behavior of charged block copolymers, however, is still at a primitive stage. Here we report the discovery of an intriguing superlattice morphology from compositionally symmetric charged block copolymers, poly[(oligo(ethylene glycol) methyl ether methacrylate–co–oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]–b–polystyrene (POEGMA–PS), achieved by systematic variation of the molecular structure in general, and the charge content in particular. POEGMA–PS self-assembles into a superlattice lamellar morphology, a previously unknown class of diblock nanostructures, but strikingly similar to oxygen-deficient perovskite derivatives, when the fraction of charged groups in the POEGMA block is about 5–25%. The charge fraction and the tethering of the ionic groups both play critical roles in driving the superlattice formation. This study highlights the accessibility of superlattice morphologies by introducing charges in a controlled manner.

Authors:
ORCiD logo [1];  [1];  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1524675
Grant/Contract Number:  
[FOA-0001664]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 10; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Polymers; Self-assembly

Citation Formats

Shim, Jimin, Bates, Frank S., and Lodge, Timothy P. Superlattice by charged block copolymer self-assembly. United States: N. p., 2019. Web. doi:10.1038/s41467-019-10141-z.
Shim, Jimin, Bates, Frank S., & Lodge, Timothy P. Superlattice by charged block copolymer self-assembly. United States. doi:10.1038/s41467-019-10141-z.
Shim, Jimin, Bates, Frank S., and Lodge, Timothy P. Wed . "Superlattice by charged block copolymer self-assembly". United States. doi:10.1038/s41467-019-10141-z. https://www.osti.gov/servlets/purl/1524675.
@article{osti_1524675,
title = {Superlattice by charged block copolymer self-assembly},
author = {Shim, Jimin and Bates, Frank S. and Lodge, Timothy P.},
abstractNote = {Charged block copolymers are of great interest due to their unique self-assembly and physicochemical properties. Understanding of the phase behavior of charged block copolymers, however, is still at a primitive stage. Here we report the discovery of an intriguing superlattice morphology from compositionally symmetric charged block copolymers, poly[(oligo(ethylene glycol) methyl ether methacrylate–co–oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]–b–polystyrene (POEGMA–PS), achieved by systematic variation of the molecular structure in general, and the charge content in particular. POEGMA–PS self-assembles into a superlattice lamellar morphology, a previously unknown class of diblock nanostructures, but strikingly similar to oxygen-deficient perovskite derivatives, when the fraction of charged groups in the POEGMA block is about 5–25%. The charge fraction and the tethering of the ionic groups both play critical roles in driving the superlattice formation. This study highlights the accessibility of superlattice morphologies by introducing charges in a controlled manner.},
doi = {10.1038/s41467-019-10141-z},
journal = {Nature Communications},
number = [1],
volume = [10],
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dynamic mechanical and dielectric relaxations of polystyrene below the glass temperature
journal, April 1971

  • Yano, Okimichi; Wada, Yasaku
  • Journal of Polymer Science Part A-2: Polymer Physics, Vol. 9, Issue 4
  • DOI: 10.1002/pol.1971.160090409

Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts
journal, February 2012


Data for Superlattice by charged block copolymer self-assembly
dataset, January 2019

  • Shim, Jimin; Bates, Frank S.; Lodge, Timonthy P.
  • The Data Repository for the University of Minnesota (DRUM)
  • DOI: 10.13020/qsa6-qg08

50th Anniversary Perspective : Block Polymers—Pure Potential
journal, December 2016


Thermodynamic and Structural Changes in Ion-Containing Symmetric Diblock Copolymers: A Small-Angle X-ray Scattering Study
journal, December 2011

  • Gunkel, Ilja; Thurn-Albrecht, Thomas
  • Macromolecules, Vol. 45, Issue 1
  • DOI: 10.1021/ma201334h

Microphase separation of charged diblock copolymers: melts and solutions
journal, September 1992


Anomalous Phase Behavior of Ionic Polymer Blends and Ionic Copolymers
journal, June 2017


Salt Doping in PEO-Containing Block Copolymers: Counterion and Concentration Effects
journal, April 2009

  • Young, Wen-Shiue; Epps, Thomas H.
  • Macromolecules, Vol. 42, Issue 7
  • DOI: 10.1021/ma802799p

A Dielectric Study of the Effects of Melting on Molecular Relaxation in Poly(ethylene oxide) and Polyoxymethylene
journal, September 1971


Morphology–Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries
journal, May 2014

  • Inceoglu, Sebnem; Rojas, Adriana A.; Devaux, Didier
  • ACS Macro Letters, Vol. 3, Issue 6
  • DOI: 10.1021/mz5001948

Relationship between Ion Dissociation, Melt Morphology, and Electrochemical Performance of Lithium and Magnesium Single-Ion Conducting Block Copolymers
journal, November 2016


Rodlike Behavior of Polyelectrolyte Brushes
journal, November 1998


Anomalous Self-Assembly and Ion Transport in Nanostructured Organic–Inorganic Solid Electrolytes
journal, August 2018


Breakdown of Inverse Morphologies in Charged Diblock Copolymers
journal, April 2011

  • Goswami, Monojoy; Kumar, Rajeev; Sumpter, Bobby G.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 13
  • DOI: 10.1021/jp111001n

Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration
journal, June 2010

  • Jackson, Elizabeth A.; Hillmyer, Marc A.
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn1014006

Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge
journal, August 2013

  • Jeen, Hyoungjeen; Choi, Woo Seok; Biegalski, Michael D.
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3736

Morphological studies and ionic transport properties of partially sulfonated diblock copolymers
journal, October 2006


Tuning anhydrous proton conduction in single-ion polymers by crystalline ion channels
journal, November 2018


Polyelectrolyte Blends and Nontrivial Behavior in Effective Flory–Huggins Parameters
journal, July 2014

  • Sing, Charles E.; Olvera de la Cruz, Monica
  • ACS Macro Letters, Vol. 3, Issue 8
  • DOI: 10.1021/mz500202n

Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough
journal, October 2013

  • Jo, Gyuha; Ahn, Hyungmin; Park, Moon Jeong
  • ACS Macro Letters, Vol. 2, Issue 11
  • DOI: 10.1021/mz400468m

Linear method for determining monomer reactivity ratios in copolymerization
journal, April 1950


Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers
journal, November 2011


Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter
journal, January 2012


Polymer Electrolytes
journal, July 2013


First-Order Disordered-to-Lamellar Phase Transition in Lithium Salt-Doped Block Copolymers
journal, May 2013

  • Nakamura, Issei; Balsara, Nitash P.; Wang, Zhen-Gang
  • ACS Macro Letters, Vol. 2, Issue 6
  • DOI: 10.1021/mz4001404

Phase Behavior of Symmetric Sulfonated Block Copolymers
journal, May 2008

  • Park, Moon Jeong; Balsara, Nitash P.
  • Macromolecules, Vol. 41, Issue 10
  • DOI: 10.1021/ma702733f

Ionic Correlations in Random Ionomers
journal, February 2018


End-functionalized block copolymer electrolytes: effect of segregation strength on ion transport efficiency
journal, January 2016


Morphology and Conductivity in Ionic Liquid Incorporated Sulfonated Block Copolymers
journal, July 2011

  • Kim, Sung Yeon; Yoon, Eunjin; Joo, Taiha
  • Macromolecules, Vol. 44, Issue 13
  • DOI: 10.1021/ma200278c

Effect of Composition on the Phase Behavior of Ion-Containing Block Copolymers Studied by a Minimal Lattice Model
journal, March 2014

  • Knychała, P.; Banaszak, M.; Balsara, N. P.
  • Macromolecules, Vol. 47, Issue 7
  • DOI: 10.1021/ma402454j

Block Copolymer Thermodynamics: Theory and Experiment
journal, October 1990


Self-assembly in block polyelectrolytes
journal, February 2011

  • Yang, Shuang; Vishnyakov, Aleksey; Neimark, Alexander V.
  • The Journal of Chemical Physics, Vol. 134, Issue 5
  • DOI: 10.1063/1.3532831

Engineering the oxygen coordination in digital superlattices
journal, December 2017

  • Cook, Seyoung; Andersen, Tassie K.; Hong, Hawoong
  • APL Materials, Vol. 5, Issue 12
  • DOI: 10.1063/1.5007663

Prediction of polymer densities
journal, May 1969


Theoretical Analysis of Multiple Phase Coexistence in Polyelectrolyte Blends
journal, August 2015


Effect of the Protogenic Group on the Phase Behavior and Ion Transport Properties of Acid-Bearing Block Copolymers
journal, August 2015


Electrostatic control of block copolymer morphology
journal, June 2014

  • Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4001

Thermodynamics of Block Copolymers with and without Salt
journal, December 2013

  • Teran, Alexander A.; Balsara, Nitash P.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 1
  • DOI: 10.1021/jp408079z

Ionic aggregation in a block copolymer ionomer
journal, October 1993

  • Lu, Xinya; Steckle, W. P.; Weiss, R. A.
  • Macromolecules, Vol. 26, Issue 22
  • DOI: 10.1021/ma00074a008

Enabling nanotechnology with self assembled block copolymer patterns
journal, October 2003


Morphologies of block copolymers composed of charged and neutral blocks
journal, January 2012

  • Wang, Xiaojun; Goswami, Monojoy; Kumar, Rajeev
  • Soft Matter, Vol. 8, Issue 11
  • DOI: 10.1039/c2sm07223h

Considerations of Macromolecular Structure in the Design of Proton Conducting Polymer Membranes:  Graft versus Diblock Polyelectrolytes
journal, December 2007

  • Tsang, Emily M. W.; Zhang, Zhaobin; Shi, Zhiqing
  • Journal of the American Chemical Society, Vol. 129, Issue 49
  • DOI: 10.1021/ja074765j