DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues

Abstract

Negative thermal expansion (NTE) behavior is an interesting physical phenomenon, but the number of NTE materials is limited. In this study, a new NTE compound has been found, FeFe(CN)6 Prussian blue analogue, where the average linear coefficient of thermal expansion (αl) is –4.260 × 10–6 K–1 between 100 and 450 K. The NTE properties and local vibration dynamics have been investigated by joint experiments of synchrotron X-ray diffraction, X-ray pair distribution function, and extended X-ray absorption fine structure spectroscopy. It has been observed that the Fe–C/Fe–N bonds expand with increasing temperature, while the unit cell shrinks in FeFe(CN)6. The vibration directions of both Fe–C and Fe–N prefer to be perpendicular to the linkage of Fe–C[≡]N–Fe rather than being parallel. More pieces of evidence indicate that the transverse vibrations of N atoms dominate the NTE behavior of FeFe(CN)6. In conclusion, the present results prove directly that the transverse thermal vibrations of C and N atoms are crucial for the occurrence of the NTE of Prussian blue analogues.

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [5]; ORCiD logo [1];  [1]
  1. Univ. of Science and Technology Beijing, Beijing (China)
  2. Univ. of Padova, Padova (Italy)
  3. Tianjin Normal Univ., Tianjin (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Elettra Sincrotrone Trieste, Basovizza (Italy)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); Fundamental Research Funds for the Central Universities; USDOE Office of Science (SC)
OSTI Identifier:
1524238
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Volume: 48; Journal Issue: 11; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Shi, Naike, Gao, Qilong, Sanson, Andrea, Li, Qiang, Fan, Longlong, Ren, Yang, Olivi, Luca, Chen, Jun, and Xing, Xianran. Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues. United States: N. p., 2019. Web. doi:10.1039/C8DT05111A.
Shi, Naike, Gao, Qilong, Sanson, Andrea, Li, Qiang, Fan, Longlong, Ren, Yang, Olivi, Luca, Chen, Jun, & Xing, Xianran. Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues. United States. https://doi.org/10.1039/C8DT05111A
Shi, Naike, Gao, Qilong, Sanson, Andrea, Li, Qiang, Fan, Longlong, Ren, Yang, Olivi, Luca, Chen, Jun, and Xing, Xianran. Fri . "Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues". United States. https://doi.org/10.1039/C8DT05111A. https://www.osti.gov/servlets/purl/1524238.
@article{osti_1524238,
title = {Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues},
author = {Shi, Naike and Gao, Qilong and Sanson, Andrea and Li, Qiang and Fan, Longlong and Ren, Yang and Olivi, Luca and Chen, Jun and Xing, Xianran},
abstractNote = {Negative thermal expansion (NTE) behavior is an interesting physical phenomenon, but the number of NTE materials is limited. In this study, a new NTE compound has been found, FeFe(CN)6 Prussian blue analogue, where the average linear coefficient of thermal expansion (αl) is –4.260 × 10–6 K–1 between 100 and 450 K. The NTE properties and local vibration dynamics have been investigated by joint experiments of synchrotron X-ray diffraction, X-ray pair distribution function, and extended X-ray absorption fine structure spectroscopy. It has been observed that the Fe–C/Fe–N bonds expand with increasing temperature, while the unit cell shrinks in FeFe(CN)6. The vibration directions of both Fe–C and Fe–N prefer to be perpendicular to the linkage of Fe–C[≡]N–Fe rather than being parallel. More pieces of evidence indicate that the transverse vibrations of N atoms dominate the NTE behavior of FeFe(CN)6. In conclusion, the present results prove directly that the transverse thermal vibrations of C and N atoms are crucial for the occurrence of the NTE of Prussian blue analogues.},
doi = {10.1039/C8DT05111A},
journal = {Dalton Transactions},
number = 11,
volume = 48,
place = {United States},
year = {Fri Feb 08 00:00:00 EST 2019},
month = {Fri Feb 08 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 26 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
journal, December 2005

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2147726

Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks
journal, March 2018

  • Hu, Lei; Qin, Feiyu; Sanson, Andrea
  • Journal of the American Chemical Society, Vol. 140, Issue 13
  • DOI: 10.1021/jacs.8b00885

Phonon density of states and negative thermal expansion in ZrW2O8
journal, November 1998

  • Ernst, G.; Broholm, C.; Kowach, G. R.
  • Nature, Vol. 396, Issue 6707
  • DOI: 10.1038/24115

Hydrogen Storage in the Dehydrated Prussian Blue Analogues M 3 [Co(CN) 6 ] 2 (M = Mn, Fe, Co, Ni, Cu, Zn)
journal, May 2005

  • Kaye, Steven S.; Long, Jeffrey R.
  • Journal of the American Chemical Society, Vol. 127, Issue 18
  • DOI: 10.1021/ja051168t

Negative thermal expansion and associated anomalous physical properties: review of the lattice dynamics theoretical foundation
journal, May 2016


Local Thermal Expansion in a Cuprite Structure: The Case of Ag 2 O
journal, June 2002


Giant negative thermal expansion in magnetic nanocrystals
journal, October 2008


The Disordered Crystal Structures of Zn(CN)2and Ga(CN)3
journal, November 1997

  • Williams, D. J.; Partin, D. E.; Lincoln, F. J.
  • Journal of Solid State Chemistry, Vol. 134, Issue 1
  • DOI: 10.1006/jssc.1997.7571

Local Vibrations and Negative Thermal Expansion in ZrW 2 O 8
journal, January 2014


On the Einstein model for EXAFS parallel and perpendicular mean-square relative displacements
journal, July 2008


Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN) 6 Prussian Blue Analogues
journal, August 2018


High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
journal, January 2014

  • You, Ya; Wu, Xing-Long; Yin, Ya-Xia
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/C3EE44004D

Negative Thermal Expansion in ZrW 2 O 8 : Mechanisms, Rigid Unit Modes, and Neutron Total Scattering
journal, December 2005


Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries
journal, January 2013

  • Wu, Xianyong; Deng, Wenwen; Qian, Jiangfeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 35
  • DOI: 10.1039/c3ta12036h

Large Negative Magnetic Contribution to the Thermal Expansion in Iron-Platinum Alloys: Quantitative Theory of the Invar Effect
journal, July 2003


Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study
journal, November 2011

  • Adak, Sourav; Daemen, Luke L.; Hartl, Monika
  • Journal of Solid State Chemistry, Vol. 184, Issue 11
  • DOI: 10.1016/j.jssc.2011.08.030

Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]
journal, February 2008


Temperature-induced valence transition and associated lattice collapse in samarium fulleride
journal, October 2003

  • Arvanitidis, J.; Papagelis, Konstantinos; Margadonna, Serena
  • Nature, Vol. 425, Issue 6958
  • DOI: 10.1038/nature01994

Structure and excellent visible light catalysis of Prussian blue analogues BiFe(CN) 6 ·4H 2 O
journal, January 2018

  • Gao, Qilong; Chen, Jun; Li, Qiang
  • Inorganic Chemistry Frontiers, Vol. 5, Issue 2
  • DOI: 10.1039/C7QI00647K

Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues M II Pt IV (CN) 6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)
journal, May 2006

  • Chapman, Karena W.; Chupas, Peter J.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 128, Issue 21
  • DOI: 10.1021/ja060916r

Isotropic Negative Thermal Expansion
journal, August 1998


Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite
journal, March 2009


Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Direct Observation of a Transverse Vibrational Mechanism for Negative Thermal Expansion in Zn(CN) 2 :  An Atomic Pair Distribution Function Analysis
journal, November 2005

  • Chapman, Karena W.; Chupas, Peter J.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 127, Issue 44
  • DOI: 10.1021/ja055197f

Tunable thermal expansion in framework materials through redox intercalation
journal, February 2017

  • Chen, Jun; Gao, Qilong; Sanson, Andrea
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14441

Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

Zero Thermal Expansion and Ferromagnetism in Cubic Sc 1– x M x F 3 (M = Ga, Fe) over a Wide Temperature Range
journal, September 2014

  • Hu, Lei; Chen, Jun; Fan, Longlong
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja5077487

Zero Thermal Expansion in Magnetic and Metallic Tb(Co,Fe) 2 Intermetallic Compounds
journal, January 2018

  • Song, Yuzhu; Chen, Jun; Liu, Xinzhi
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b12235

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

Negative thermal expansion in molecular materials
journal, January 2018

  • Liu, Zhanning; Gao, Qilong; Chen, Jun
  • Chemical Communications, Vol. 54, Issue 41
  • DOI: 10.1039/C8CC01153B

Systematic and Controllable Negative, Zero, and Positive Thermal Expansion in Cubic Zr 1– x Sn x Mo 2 O 8
journal, August 2013

  • Tallentire, Sarah E.; Child, Felicity; Fall, Ian
  • Journal of the American Chemical Society, Vol. 135, Issue 34
  • DOI: 10.1021/ja4060564

Guest-Dependent Negative Thermal Expansion in Nanoporous Prussian Blue Analogues M II Pt IV (CN) 6 · x {H 2 O} (0 ≤ x ≤ 2; M = Zn, Cd)
journal, December 2005

  • Goodwin, Andrew L.; Chapman, Karena W.; Kepert, Cameron J.
  • Journal of the American Chemical Society, Vol. 127, Issue 51
  • DOI: 10.1021/ja056460f

Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials
journal, April 2005


Negative Thermal Expansion in LnCo(CN) 6 (Ln=La, Pr, Sm, Ho, Lu, Y): Mechanisms and Compositional Trends
journal, April 2013

  • Duyker, Samuel G.; Peterson, Vanessa K.; Kearley, Gordon J.
  • Angewandte Chemie, Vol. 125, Issue 20
  • DOI: 10.1002/ange.201300619

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series
journal, February 1995

  • Korthuis, V.; Khosrovani, N.; Sleight, A. W.
  • Chemistry of Materials, Vol. 7, Issue 2
  • DOI: 10.1021/cm00050a028

Zero Thermal Expansion in a Prussian Blue Analogue
journal, December 2004

  • Margadonna, Serena; Prassides, Kosmas; Fitch, Andrew N.
  • Journal of the American Chemical Society, Vol. 126, Issue 47
  • DOI: 10.1021/ja044959o

New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the “Guitar-String” Effect in Cubic ScF 3
journal, June 2016

  • Hu, Lei; Chen, Jun; Sanson, Andrea
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b02370

Soft modes and negative thermal expansion in Zn ( C N ) 2 from Raman spectroscopy and first-principles calculations
journal, August 2007


Drug “Pent-Up” in Hollow Magnetic Prussian Blue Nanoparticles for NIR-Induced Chemo-Photothermal Tumor Therapy with Trimodal Imaging
journal, May 2017

  • Li, Jinghua; Zhang, Fengshou; Hu, Zhigang
  • Advanced Healthcare Materials, Vol. 6, Issue 14
  • DOI: 10.1002/adhm.201700005

Switching Between Giant Positive and Negative Thermal Expansions of a YFe(CN) 6 -based Prussian Blue Analogue Induced by Guest Species
journal, June 2017

  • Gao, Qilong; Chen, Jun; Sun, Qiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 31
  • DOI: 10.1002/anie.201702955

Negative Thermal Expansion in LnCo(CN) 6 (Ln=La, Pr, Sm, Ho, Lu, Y): Mechanisms and Compositional Trends
journal, April 2013

  • Duyker, Samuel G.; Peterson, Vanessa K.; Kearley, Gordon J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 20
  • DOI: 10.1002/anie.201300619

Zero Thermal Expansion in a Prussian Blue Analogue.
journal, March 2005

  • Margadonna, Serena; Prassides, Kosmas; Fitch, Andrew N.
  • ChemInform, Vol. 36, Issue 9
  • DOI: 10.1002/chin.200509009

Compositional Dependence of Negative Thermal Expansion in the Prussian Blue Analogues MIIPtIV(CN)6 (M: Mn, Fe, Co, Ni, Cu, Zn, Cd).
journal, August 2006

  • Chapman, Karena W.; Chupas, Peter J.; Kepert, Cameron J.
  • ChemInform, Vol. 37, Issue 34
  • DOI: 10.1002/chin.200634004

Thermal Expansion in 3d-Metal Prussian Blue Analogs - A Survey Study
text, January 2011


Works referencing / citing this record:

Perovskite-related ReO3-type structures
journal, January 2020


Negative thermal expansion and the role of hybridization in perovskite-type PbTiO 3 -Bi(Cu 0.5 Ti 0.5 )O 3
journal, January 2020

  • Fan, Longlong; Li, Qiang; Zhang, Linxing
  • Inorganic Chemistry Frontiers, Vol. 7, Issue 5
  • DOI: 10.1039/c9qi01546a