DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water

Abstract

Abstract. We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 °C) data over a wide T range (-36 °C  < T < - 4  °C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of T, ns,geo(T). Additionally, we also compared the ns,geo(T) values and the freezing spectral slope parameter ( Δ log ( n s , geo ) / Δ T ) from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans ≈ 10 °C. Despite given uncertainties within each instrument technique, the overall trend of the ns,geo(T) spectrum traced by the T-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher ns,geo(T).

Authors:
ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ORCiD logo; ORCiD logo more »; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ; ; ORCiD logo; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1506142
Alternate Identifier(s):
OSTI ID: 1524150
Report Number(s):
PNNL-SA-141665
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
SC0018979; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online) Journal Volume: 19 Journal Issue: 7; Journal ID: ISSN 1680-7324
Publisher:
Copernicus Publications, EGU
Country of Publication:
Germany
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hiranuma, Naruki, Adachi, Kouji, Bell, David M., Belosi, Franco, Beydoun, Hassan, Bhaduri, Bhaskar, Bingemer, Heinz, Budke, Carsten, Clemen, Hans-Christian, Conen, Franz, Cory, Kimberly M., Curtius, Joachim, DeMott, Paul J., Eppers, Oliver, Grawe, Sarah, Hartmann, Susan, Hoffmann, Nadine, Höhler, Kristina, Jantsch, Evelyn, Kiselev, Alexei, Koop, Thomas, Kulkarni, Gourihar, Mayer, Amelie, Murakami, Masataka, Murray, Benjamin J., Nicosia, Alessia, Petters, Markus D., Piazza, Matteo, Polen, Michael, Reicher, Naama, Rudich, Yinon, Saito, Atsushi, Santachiara, Gianni, Schiebel, Thea, Schill, Gregg P., Schneider, Johannes, Segev, Lior, Stopelli, Emiliano, Sullivan, Ryan C., Suski, Kaitlyn, Szakáll, Miklós, Tajiri, Takuya, Taylor, Hans, Tobo, Yutaka, Ullrich, Romy, Weber, Daniel, Wex, Heike, Whale, Thomas F., Whiteside, Craig L., Yamashita, Katsuya, Zelenyuk, Alla, and Möhler, Ottmar. A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Germany: N. p., 2019. Web. doi:10.5194/acp-19-4823-2019.
Hiranuma, Naruki, Adachi, Kouji, Bell, David M., Belosi, Franco, Beydoun, Hassan, Bhaduri, Bhaskar, Bingemer, Heinz, Budke, Carsten, Clemen, Hans-Christian, Conen, Franz, Cory, Kimberly M., Curtius, Joachim, DeMott, Paul J., Eppers, Oliver, Grawe, Sarah, Hartmann, Susan, Hoffmann, Nadine, Höhler, Kristina, Jantsch, Evelyn, Kiselev, Alexei, Koop, Thomas, Kulkarni, Gourihar, Mayer, Amelie, Murakami, Masataka, Murray, Benjamin J., Nicosia, Alessia, Petters, Markus D., Piazza, Matteo, Polen, Michael, Reicher, Naama, Rudich, Yinon, Saito, Atsushi, Santachiara, Gianni, Schiebel, Thea, Schill, Gregg P., Schneider, Johannes, Segev, Lior, Stopelli, Emiliano, Sullivan, Ryan C., Suski, Kaitlyn, Szakáll, Miklós, Tajiri, Takuya, Taylor, Hans, Tobo, Yutaka, Ullrich, Romy, Weber, Daniel, Wex, Heike, Whale, Thomas F., Whiteside, Craig L., Yamashita, Katsuya, Zelenyuk, Alla, & Möhler, Ottmar. A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water. Germany. https://doi.org/10.5194/acp-19-4823-2019
Hiranuma, Naruki, Adachi, Kouji, Bell, David M., Belosi, Franco, Beydoun, Hassan, Bhaduri, Bhaskar, Bingemer, Heinz, Budke, Carsten, Clemen, Hans-Christian, Conen, Franz, Cory, Kimberly M., Curtius, Joachim, DeMott, Paul J., Eppers, Oliver, Grawe, Sarah, Hartmann, Susan, Hoffmann, Nadine, Höhler, Kristina, Jantsch, Evelyn, Kiselev, Alexei, Koop, Thomas, Kulkarni, Gourihar, Mayer, Amelie, Murakami, Masataka, Murray, Benjamin J., Nicosia, Alessia, Petters, Markus D., Piazza, Matteo, Polen, Michael, Reicher, Naama, Rudich, Yinon, Saito, Atsushi, Santachiara, Gianni, Schiebel, Thea, Schill, Gregg P., Schneider, Johannes, Segev, Lior, Stopelli, Emiliano, Sullivan, Ryan C., Suski, Kaitlyn, Szakáll, Miklós, Tajiri, Takuya, Taylor, Hans, Tobo, Yutaka, Ullrich, Romy, Weber, Daniel, Wex, Heike, Whale, Thomas F., Whiteside, Craig L., Yamashita, Katsuya, Zelenyuk, Alla, and Möhler, Ottmar. Wed . "A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water". Germany. https://doi.org/10.5194/acp-19-4823-2019.
@article{osti_1506142,
title = {A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water},
author = {Hiranuma, Naruki and Adachi, Kouji and Bell, David M. and Belosi, Franco and Beydoun, Hassan and Bhaduri, Bhaskar and Bingemer, Heinz and Budke, Carsten and Clemen, Hans-Christian and Conen, Franz and Cory, Kimberly M. and Curtius, Joachim and DeMott, Paul J. and Eppers, Oliver and Grawe, Sarah and Hartmann, Susan and Hoffmann, Nadine and Höhler, Kristina and Jantsch, Evelyn and Kiselev, Alexei and Koop, Thomas and Kulkarni, Gourihar and Mayer, Amelie and Murakami, Masataka and Murray, Benjamin J. and Nicosia, Alessia and Petters, Markus D. and Piazza, Matteo and Polen, Michael and Reicher, Naama and Rudich, Yinon and Saito, Atsushi and Santachiara, Gianni and Schiebel, Thea and Schill, Gregg P. and Schneider, Johannes and Segev, Lior and Stopelli, Emiliano and Sullivan, Ryan C. and Suski, Kaitlyn and Szakáll, Miklós and Tajiri, Takuya and Taylor, Hans and Tobo, Yutaka and Ullrich, Romy and Weber, Daniel and Wex, Heike and Whale, Thomas F. and Whiteside, Craig L. and Yamashita, Katsuya and Zelenyuk, Alla and Möhler, Ottmar},
abstractNote = {Abstract. We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (T) conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating T-binned (1 °C) data over a wide T range (-36 °C <T<-4 °C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of T, ns,geo(T). Additionally, we also compared the ns,geo(T) values and the freezing spectral slope parameter (Δlog(ns,geo)/ΔT) from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans ≈ 10 °C. Despite given uncertainties within each instrument technique, the overall trend of the ns,geo(T) spectrum traced by the T-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher ns,geo(T).},
doi = {10.5194/acp-19-4823-2019},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 7,
volume = 19,
place = {Germany},
year = {Wed Apr 10 00:00:00 EDT 2019},
month = {Wed Apr 10 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.5194/acp-19-4823-2019

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Properties of microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC).

Save / Share:

Works referenced in this record:

A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot
journal, March 2017

  • Ullrich, Romy; Hoose, Corinna; Möhler, Ottmar
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 3
  • DOI: 10.1175/JAS-D-16-0074.1

Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating
journal, January 1997


The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds
journal, June 2013

  • Atkinson, James D.; Murray, Benjamin J.; Woodhouse, Matthew T.
  • Nature, Vol. 498, Issue 7454
  • DOI: 10.1038/nature12278

Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra
journal, January 2016

  • Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 20
  • DOI: 10.5194/acp-16-13359-2016

The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review
journal, January 2018


Sub-micrometer refractory carbonaceous particles in the polar stratosphere
journal, January 2017

  • Schütze, Katharina; Wilson, James Charles; Weinbruch, Stephan
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 20
  • DOI: 10.5194/acp-17-12475-2017

Technical Note: A proposal for ice nucleation terminology
journal, January 2015


A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
journal, January 2015

  • Hiranuma, N.; Augustin-Bauditz, S.; Bingemer, H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 5
  • DOI: 10.5194/acp-15-2489-2015

Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites
journal, January 2019

  • Samaké, Abdoulaye; Jaffrezo, Jean-Luc; Favez, Olivier
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 5
  • DOI: 10.5194/acp-19-3357-2019

Ice nucleation by particles immersed in supercooled cloud droplets
journal, January 2012

  • Murray, B. J.; O'Sullivan, D.; Atkinson, J. D.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35200a

Green composites from sustainable cellulose nanofibrils: A review
journal, January 2012


Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA
journal, January 2003

  • Möhler, O.; Stetzer, O.; Schaefers, S.
  • Atmospheric Chemistry and Physics, Vol. 3, Issue 1
  • DOI: 10.5194/acp-3-211-2003

Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber
journal, January 2017

  • DeMott, Paul J.; Hill, Thomas C. J.; Petters, Markus D.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 18
  • DOI: 10.5194/acp-17-11227-2017

Observations of ice nucleation by ambient aerosol in the homogeneous freezing regime: OBSERVATIONS OF ICE NUCLEATION
journal, February 2010

  • Richardson, Mathews S.; DeMott, Paul J.; Kreidenweis, Sonia M.
  • Geophysical Research Letters, Vol. 37, Issue 4
  • DOI: 10.1029/2009GL041912

Size distribution and seasonal variation of atmospheric cellulose
journal, August 2003


Processing and characterization of natural cellulose fibers/thermoset polymer composites
journal, August 2014


Active sites in heterogeneous ice nucleation—the example of K-rich feldspars
journal, December 2016


Microcrystalline Cellulose
journal, September 1962

  • Battista, O. A.; Smith, P. A.
  • Industrial & Engineering Chemistry, Vol. 54, Issue 9
  • DOI: 10.1021/ie50633a003

Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles
journal, January 2015

  • DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-393-2015

Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores
journal, January 2007

  • Legrand, M.; Preunkert, S.; Schock, M.
  • Journal of Geophysical Research, Vol. 112, Issue D23
  • DOI: 10.1029/2006JD008080

A Novel Adiabatic-Expansion-Type Cloud Simulation Chamber
journal, January 2013

  • Tajiri, Takuya; Yamashita, Katsuya; Murakami, Masataka
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 91, Issue 5
  • DOI: 10.2151/jmsj.2013-509

Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers
journal, January 2017

  • Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 17
  • DOI: 10.5194/acp-17-10855-2017

Ice-forming nuclei in Antarctica: New and past measurements
journal, August 2014


Experimental quantification of contact freezing in an electrodynamic balance
journal, January 2013

  • Hoffmann, N.; Kiselev, A.; Rzesanke, D.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 9
  • DOI: 10.5194/amt-6-2373-2013

Investigating the discrepancy between wet-suspension- and dry-dispersion-derived ice nucleation efficiency of mineral particles
journal, January 2015

  • Emersic, C.; Connolly, P. J.; Boult, S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 19
  • DOI: 10.5194/acp-15-11311-2015

The unstable ice nucleation properties of Snomax® bacterial particles: UNSTABLE FREEZING PROPERTIES OF BACTERIA
journal, October 2016

  • Polen, Michael; Lawlis, Emily; Sullivan, Ryan C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 19
  • DOI: 10.1002/2016JD025251

Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
journal, February 2018

  • Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 11
  • DOI: 10.1073/pnas.1721627115

Ice nucleation and droplet formation by bare and coated soot particles
journal, January 2011

  • Friedman, Beth; Kulkarni, Gourihar; Beránek, Josef
  • Journal of Geophysical Research, Vol. 116, Issue D17
  • DOI: 10.1029/2011JD015999

A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles
journal, October 2012

  • Niemand, Monika; Möhler, Ottmar; Vogel, Bernhard
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 10
  • DOI: 10.1175/JAS-D-11-0249.1

Critical review of recent publications on use of natural composites in infrastructure
journal, August 2012


Cleaning up our water: reducing interferences from nonhomogeneous freezing of “pure” water in droplet freezing assays of ice-nucleating particles
journal, January 2018

  • Polen, Michael; Brubaker, Thomas; Somers, Joshua
  • Atmospheric Measurement Techniques, Vol. 11, Issue 9
  • DOI: 10.5194/amt-11-5315-2018

Sampling Artifacts from Conductive Silicone Tubing
journal, August 2009

  • Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse
  • Aerosol Science and Technology, Vol. 43, Issue 9
  • DOI: 10.1080/02786820902984811

The relevance of nanoscale biological fragments for ice nucleation in clouds
journal, January 2015

  • O′Sullivan, D.; Murray, B. J.; Ross, J. F.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08082

The immersion freezing behavior of ash particles from wood and brown coal burning
journal, January 2016

  • Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13911-2016

Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen
journal, January 2012

  • Pummer, B. G.; Bauer, H.; Bernardi, J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 5
  • DOI: 10.5194/acp-12-2541-2012

Freezing nucleation apparatus puts new slant on study of biological ice nucleators in precipitation
journal, January 2014

  • Stopelli, E.; Conen, F.; Zimmermann, L.
  • Atmospheric Measurement Techniques, Vol. 7, Issue 1
  • DOI: 10.5194/amt-7-129-2014

Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings
journal, January 2014


A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial particles and a Snomax–illite mineral particle mixture
journal, January 2017

  • Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 22
  • DOI: 10.5194/acp-17-13545-2017

Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


Homogeneous and heterogeneous ice nucleation at LACIS: operating principle and theoretical studies
journal, January 2011

  • Hartmann, S.; Niedermeier, D.; Voigtländer, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1753-2011

Nanoscale Cellulose Films with Different Crystallinities and Mesostructures—Their Surface Properties and Interaction with Water
journal, July 2009

  • Aulin, Christian; Ahola, Susanna; Josefsson, Peter
  • Langmuir, Vol. 25, Issue 13
  • DOI: 10.1021/la900323n

Leipzig Ice Nucleation chamber Comparison (LINC): intercomparison of four online ice nucleation counters
journal, January 2017

  • Burkert-Kohn, Monika; Wex, Heike; Welti, André
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 18
  • DOI: 10.5194/acp-17-11683-2017

A laboratory investigation into the aggregation efficiency of small ice crystals
journal, January 2012

  • Connolly, P. J.; Emersic, C.; Field, P. R.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 4
  • DOI: 10.5194/acp-12-2055-2012

Atmospheric particles acting as Ice Forming Nuclei in different size ranges
journal, May 2010


Biogenic Ice Nuclei: Part I. Terrestrial and Marine Sources
journal, August 1976


Intercomparing different devices for the investigation of ice nucleating particles using Snomax ® as test substance
journal, January 2015

  • Wex, H.; Augustin-Bauditz, S.; Boose, Y.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 3
  • DOI: 10.5194/acp-15-1463-2015

BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation
journal, January 2015


Agricultural harvesting emissions of ice-nucleating particles
journal, January 2018

  • Suski, Kaitlyn J.; Hill, Tom C. J.; Levin, Ezra J. T.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 18
  • DOI: 10.5194/acp-18-13755-2018

Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides
journal, February 2017

  • Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41890

Shapes and oscillations of falling raindrops — A review
journal, September 2010


Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles
journal, January 2014

  • Hiranuma, N.; Hoffmann, N.; Kiselev, A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2315-2014

Concentration of atmospheric cellulose: A proxy for plant debris across a west-east transect over Europe
journal, January 2007

  • Sánchez-Ochoa, Asunción; Kasper-Giebl, Anne; Puxbaum, Hans
  • Journal of Geophysical Research, Vol. 112, Issue D23
  • DOI: 10.1029/2006JD008180

World-wide Source of Leaf-derived Freezing Nuclei
journal, November 1973


Adsorption of Gases in Multimolecular Layers
journal, February 1938

  • Brunauer, Stephen; Emmett, P. H.; Teller, Edward
  • Journal of the American Chemical Society, Vol. 60, Issue 2, p. 309-319
  • DOI: 10.1021/ja01269a023

Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation
journal, January 2016

  • Schrod, Jann; Danielczok, Anja; Weber, Daniel
  • Atmospheric Measurement Techniques, Vol. 9, Issue 3
  • DOI: 10.5194/amt-9-1313-2016

Atmospheric Ice Nuclei from Decomposing Vegetation
journal, March 1972


Modeling immersion freezing with aerosol-dependent prognostic ice nuclei in Arctic mixed-phase clouds: PAUKERT AND HOOSE
journal, July 2014

  • Paukert, M.; Hoose, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 14
  • DOI: 10.1002/2014JD021917

The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust
journal, January 2018

  • Reicher, Naama; Segev, Lior; Rudich, Yinon
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-233-2018

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets
journal, January 2015

  • Whale, T. F.; Murray, B. J.; O'Sullivan, D.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2437-2015

An improved approach for measuring immersion freezing in large droplets over a wide temperature range
journal, September 2016


Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications
journal, April 2013


Ice nucleation by cellulose and its potential contribution to ice formation in clouds
journal, March 2015

  • Hiranuma, N.; Möhler, O.; Yamashita, K.
  • Nature Geoscience, Vol. 8, Issue 4
  • DOI: 10.1038/ngeo2374

Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction
journal, August 2002

  • Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 124, Issue 31
  • DOI: 10.1021/ja0257319

Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period
journal, January 2018

  • Vlachou, Athanasia; Daellenbach, Kaspar R.; Bozzetti, Carlo
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 9
  • DOI: 10.5194/acp-18-6187-2018

Microphysics of Clouds and Precipitation
book, June 2010


The role of time in heterogeneous freezing nucleation: ROLE OF TIME IN ICE NUCLEATION
journal, May 2013

  • Wright, Timothy P.; Petters, Markus D.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 9
  • DOI: 10.1002/jgrd.50365