DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cosmological lensing ratios with DES Y1, SPT, and Planck

Abstract

Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance CDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertaintiesmore » associated with photometric redshift and galaxy shear estimation.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [2];  [3];  [2];  [4];  [5];  [6];  [2];  [3];  [7];  [8];  [9];  [10];  [11];  [12];  [1];  [13];  [14] more »;  [15];  [12];  [2];  [16];  [17];  [6];  [18];  [8];  [5];  [19];  [20];  [10];  [21];  [17];  [1];  [22];  [23];  [24];  [25];  [6];  [26];  [27];  [28];  [29];  [30];  [31];  [32];  [33];  [1];  [34];  [35];  [36];  [37];  [8];  [38];  [39];  [25];  [40];  [41];  [30];  [42];  [43];  [25];  [5];  [44];  [5];  [45];  [43];  [46];  [33];  [38];  [25];  [47];  [48];  [49];  [49];  [17];  [7];  [50];  [51];  [52];  [26];  [53];  [54];  [25];  [30];  [47];  [7];  [55];  [50];  [38];  [7];  [56];  [57];  [58];  [59];  [33];  [60];  [43];  [7];  [61];  [62];  [7];  [63];  [64];  [65];  [31];  [66];  [31];  [9];  [67];  [25];  [68];  [5];  [9];  [69];  [36];  [70];  [71];  [72];  [73];  [51];  [74];  [75];  [76];  [58];  [6];  [77];  [78];  [79];  [23];  [80];  [7];  [81];  [82] « less
  1. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  2. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  3. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  4. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain, Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  5. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  6. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  7. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
  8. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  9. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, 28040, Spain
  10. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15312, USA
  11. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  12. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany, Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  13. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain, Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  14. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  15. Department of Physics and McGill Space Institute, McGill University, Montreal, Quebec H3A 2T8, Canada, Canadian Institute for Advanced Research, CIFAR Program in Gravity and the Extreme Universe, Toronto, ON M5G 1Z8, Canada, Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, Department of Physics, University of Illinois Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801, USA
  16. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
  17. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  18. Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  19. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15312, USA, Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  20. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
  21. Brookhaven National Laboratory, Building 510, Upton, NY 11973, USA
  22. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
  23. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  24. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
  25. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  26. Department of Physics, University of California, Davis, CA 95616, USA
  27. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
  28. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  29. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
  30. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  31. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  32. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA, High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA, Department of Physics, University of Chicago, Chicago, IL 60637, USA, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
  33. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  34. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA, High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
  35. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  36. Department of Physics and McGill Space Institute, McGill University, Montreal, Quebec H3A 2T8, Canada
  37. California Institute of Technology, Pasadena, CA 91125, USA
  38. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  39. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  40. Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany, Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
  41. Department of Physics and McGill Space Institute, McGill University, Montreal, Quebec H3A 2T8, Canada, Canadian Institute for Advanced Research, CIFAR Program in Gravity and the Extreme Universe, Toronto, ON M5G 1Z8, Canada
  42. Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA
  43. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  44. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid, Spain
  45. Department of Physics, University of California, Berkeley, CA 94720, USA, European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching, Germany
  46. Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany, Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK, Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  47. Department of Physics, University of California, Berkeley, CA 94720, USA, Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  48. Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA, Department of Physics, University of Colorado, Boulder, CO 80309, USA
  49. Department of Physics, University of California, Berkeley, CA 94720, USA
  50. University of Chicago, Chicago, IL 60637, USA
  51. Department of Astronomy and Astrophysics, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  52. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  53. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  54. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  55. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  56. Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
  57. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  58. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  59. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  60. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA, Department of Physics, University of Chicago, Chicago, IL 6063, USA
  61. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany, Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
  62. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Physics, University of Chicago, Chicago, IL 60637, USA, Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St George St, Toronto, ON M5S 3H4, Canada
  63. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  64. Department of Physics, University of Minnesota, Minneapolis, MN 55455,USA
  65. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  66. Physics Department, Center for Education and Research in Cosmology and Astrophysics, Case Western Reserve University, Cleveland, OH 44106, USA
  67. Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309, USA, Physics Department, Center for Education and Research in Cosmology and Astrophysics, Case Western Reserve University, Cleveland, OH 44106, USA
  68. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA, Liberal Arts Department, School of the Art Institute of Chicago, Chicago, IL 60603, USA
  69. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA, Department of Physics, University of California, Berkeley, CA 94720, USA
  70. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  71. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  72. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  73. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA, Physics Department, Center for Education and Research in Cosmology and Astrophysics, Case Western Reserve University, Cleveland, OH 44106, USA
  74. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA, Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  75. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  76. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  77. Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St George St, Toronto, ON M5S 3H4, Canada, Department of Astronomy & Astrophysics, University of Toronto, 50 St George St, Toronto, ON M5S 3H4, Canada
  78. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA, Department of Physics, University of Illinois Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801, USA
  79. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
  80. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany, Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany, Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
  81. Berkeley Center for Cosmological Physics, Department of Physics, University of California, and Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
  82. (
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
The DES and SPT Collaborations
OSTI Identifier:
1524095
Alternate Identifier(s):
OSTI ID: 1487407; OSTI ID: 1531216; OSTI ID: 1561937
Report Number(s):
arXiv:1810.02212; FERMILAB-PUB-18-547-AE
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
AC02-05CH11231; AC02-07CH11359; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 487 Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United Kingdom
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; cosmological parameters; gravitational lensing: weak; large-scale structure of Universe

Citation Formats

Prat, J., Baxter, E., Shin, T., Sánchez, C., Chang, C., Jain, B., Miquel, R., Alarcon, A., Bacon, D., Bernstein, G. M., Cawthon, R., Crawford, T. M., Davis, C., De Vicente, J., Dodelson, S., Eifler, T. F., Friedrich, O., Gatti, M., Gruen, D., Hartley, W. G., Holder, G. P., Hoyle, B., Jarvis, M., Krause, E., MacCrann, N., Mawdsley, B., Nicola, A., Omori, Y., Pujol, A., Rau, M. M., Reichardt, C. L., Samuroff, S., Sheldon, E., Troxel, M. A., Vielzeuf, P., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Annis, J., Avila, S., Aylor, K., Benson, B. A., Bertin, E., Bleem, L. E., Brooks, D., Burke, D. L., Carlstrom, J. E., Carrasco Kind, M., Carretero, J., Chang, C. L., Cho, H-M, Chown, R., Crites, A. T., Cunha, C. E., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Doel, P., Everett, W. B., Evrard, A. E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., George, E. M., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., de Haan, T., Halverson, N. W., Harrington, N. L., Holzapfel, W. L., Honscheid, K., Hou, Z., Hrubes, J. D., James, D. J., Jeltema, T., Knox, L., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, A. T., Leitch, E. M., Lima, M., Luong-Van, D., Maia, M. A. G., Manzotti, A., Marrone, D. P., Marshall, J. L., McMahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miller, C. J., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Plazas, A. A., Pryke, C., Romer, A. K., Roodman, A., Ruhl, J. E., Rykoff, E. S., Sanchez, E., Sayre, J. T., Scarpine, V., Schaffer, K. K., Serrano, S., Sevilla-Noarbe, I., Shirokoff, E., Simard, G., Smith, M., Soares-Santos, M., Sobreira, F., Staniszewski, Z., Stark, A. A., Story, K. T., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vanderlinde, K., Vieira, J. D., Vikram, V., Walker, A. R., Weller, J., Williamson, R., Zahn, O., and The DES and SPT Collaborations). Cosmological lensing ratios with DES Y1, SPT, and Planck. United Kingdom: N. p., 2019. Web. doi:10.1093/mnras/stz1309.
Prat, J., Baxter, E., Shin, T., Sánchez, C., Chang, C., Jain, B., Miquel, R., Alarcon, A., Bacon, D., Bernstein, G. M., Cawthon, R., Crawford, T. M., Davis, C., De Vicente, J., Dodelson, S., Eifler, T. F., Friedrich, O., Gatti, M., Gruen, D., Hartley, W. G., Holder, G. P., Hoyle, B., Jarvis, M., Krause, E., MacCrann, N., Mawdsley, B., Nicola, A., Omori, Y., Pujol, A., Rau, M. M., Reichardt, C. L., Samuroff, S., Sheldon, E., Troxel, M. A., Vielzeuf, P., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Annis, J., Avila, S., Aylor, K., Benson, B. A., Bertin, E., Bleem, L. E., Brooks, D., Burke, D. L., Carlstrom, J. E., Carrasco Kind, M., Carretero, J., Chang, C. L., Cho, H-M, Chown, R., Crites, A. T., Cunha, C. E., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Doel, P., Everett, W. B., Evrard, A. E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., George, E. M., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., de Haan, T., Halverson, N. W., Harrington, N. L., Holzapfel, W. L., Honscheid, K., Hou, Z., Hrubes, J. D., James, D. J., Jeltema, T., Knox, L., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, A. T., Leitch, E. M., Lima, M., Luong-Van, D., Maia, M. A. G., Manzotti, A., Marrone, D. P., Marshall, J. L., McMahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miller, C. J., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Plazas, A. A., Pryke, C., Romer, A. K., Roodman, A., Ruhl, J. E., Rykoff, E. S., Sanchez, E., Sayre, J. T., Scarpine, V., Schaffer, K. K., Serrano, S., Sevilla-Noarbe, I., Shirokoff, E., Simard, G., Smith, M., Soares-Santos, M., Sobreira, F., Staniszewski, Z., Stark, A. A., Story, K. T., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vanderlinde, K., Vieira, J. D., Vikram, V., Walker, A. R., Weller, J., Williamson, R., Zahn, O., & The DES and SPT Collaborations). Cosmological lensing ratios with DES Y1, SPT, and Planck. United Kingdom. https://doi.org/10.1093/mnras/stz1309
Prat, J., Baxter, E., Shin, T., Sánchez, C., Chang, C., Jain, B., Miquel, R., Alarcon, A., Bacon, D., Bernstein, G. M., Cawthon, R., Crawford, T. M., Davis, C., De Vicente, J., Dodelson, S., Eifler, T. F., Friedrich, O., Gatti, M., Gruen, D., Hartley, W. G., Holder, G. P., Hoyle, B., Jarvis, M., Krause, E., MacCrann, N., Mawdsley, B., Nicola, A., Omori, Y., Pujol, A., Rau, M. M., Reichardt, C. L., Samuroff, S., Sheldon, E., Troxel, M. A., Vielzeuf, P., Zuntz, J., Abbott, T. M. C., Abdalla, F. B., Annis, J., Avila, S., Aylor, K., Benson, B. A., Bertin, E., Bleem, L. E., Brooks, D., Burke, D. L., Carlstrom, J. E., Carrasco Kind, M., Carretero, J., Chang, C. L., Cho, H-M, Chown, R., Crites, A. T., Cunha, C. E., da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Doel, P., Everett, W. B., Evrard, A. E., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., George, E. M., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., de Haan, T., Halverson, N. W., Harrington, N. L., Holzapfel, W. L., Honscheid, K., Hou, Z., Hrubes, J. D., James, D. J., Jeltema, T., Knox, L., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Lee, A. T., Leitch, E. M., Lima, M., Luong-Van, D., Maia, M. A. G., Manzotti, A., Marrone, D. P., Marshall, J. L., McMahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miller, C. J., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Plazas, A. A., Pryke, C., Romer, A. K., Roodman, A., Ruhl, J. E., Rykoff, E. S., Sanchez, E., Sayre, J. T., Scarpine, V., Schaffer, K. K., Serrano, S., Sevilla-Noarbe, I., Shirokoff, E., Simard, G., Smith, M., Soares-Santos, M., Sobreira, F., Staniszewski, Z., Stark, A. A., Story, K. T., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Vanderlinde, K., Vieira, J. D., Vikram, V., Walker, A. R., Weller, J., Williamson, R., Zahn, O., and The DES and SPT Collaborations). Tue . "Cosmological lensing ratios with DES Y1, SPT, and Planck". United Kingdom. https://doi.org/10.1093/mnras/stz1309.
@article{osti_1524095,
title = {Cosmological lensing ratios with DES Y1, SPT, and Planck},
author = {Prat, J. and Baxter, E. and Shin, T. and Sánchez, C. and Chang, C. and Jain, B. and Miquel, R. and Alarcon, A. and Bacon, D. and Bernstein, G. M. and Cawthon, R. and Crawford, T. M. and Davis, C. and De Vicente, J. and Dodelson, S. and Eifler, T. F. and Friedrich, O. and Gatti, M. and Gruen, D. and Hartley, W. G. and Holder, G. P. and Hoyle, B. and Jarvis, M. and Krause, E. and MacCrann, N. and Mawdsley, B. and Nicola, A. and Omori, Y. and Pujol, A. and Rau, M. M. and Reichardt, C. L. and Samuroff, S. and Sheldon, E. and Troxel, M. A. and Vielzeuf, P. and Zuntz, J. and Abbott, T. M. C. and Abdalla, F. B. and Annis, J. and Avila, S. and Aylor, K. and Benson, B. A. and Bertin, E. and Bleem, L. E. and Brooks, D. and Burke, D. L. and Carlstrom, J. E. and Carrasco Kind, M. and Carretero, J. and Chang, C. L. and Cho, H-M and Chown, R. and Crites, A. T. and Cunha, C. E. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Dietrich, J. P. and Dobbs, M. A. and Doel, P. and Everett, W. B. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Gaztanaga, E. and George, E. M. and Gerdes, D. W. and Giannantonio, T. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and de Haan, T. and Halverson, N. W. and Harrington, N. L. and Holzapfel, W. L. and Honscheid, K. and Hou, Z. and Hrubes, J. D. and James, D. J. and Jeltema, T. and Knox, L. and Kron, R. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lee, A. T. and Leitch, E. M. and Lima, M. and Luong-Van, D. and Maia, M. A. G. and Manzotti, A. and Marrone, D. P. and Marshall, J. L. and McMahon, J. J. and Melchior, P. and Menanteau, F. and Meyer, S. S. and Miller, C. J. and Mocanu, L. M. and Mohr, J. J. and Natoli, T. and Padin, S. and Plazas, A. A. and Pryke, C. and Romer, A. K. and Roodman, A. and Ruhl, J. E. and Rykoff, E. S. and Sanchez, E. and Sayre, J. T. and Scarpine, V. and Schaffer, K. K. and Serrano, S. and Sevilla-Noarbe, I. and Shirokoff, E. and Simard, G. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Staniszewski, Z. and Stark, A. A. and Story, K. T. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Vanderlinde, K. and Vieira, J. D. and Vikram, V. and Walker, A. R. and Weller, J. and Williamson, R. and Zahn, O. and The DES and SPT Collaborations)},
abstractNote = {Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance CDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation.},
doi = {10.1093/mnras/stz1309},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 487,
place = {United Kingdom},
year = {Tue May 14 00:00:00 EDT 2019},
month = {Tue May 14 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1093/mnras/stz1309

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Weak lensing analysis in three dimensions
journal, July 2005


The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package
journal, August 2018

  • Price-Whelan, A. M.; Sipőcz, B. M.; Günther, H. M.
  • The Astronomical Journal, Vol. 156, Issue 3
  • DOI: 10.3847/1538-3881/aabc4f

Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies
journal, March 1999


CMB lensing tomography with the DES Science Verification galaxies
journal, January 2016

  • Giannantonio, T.; Fosalba, P.; Cawthon, R.
  • Monthly Notices of the Royal Astronomical Society, Vol. 456, Issue 3
  • DOI: 10.1093/mnras/stv2678

Mass Reconstruction with Cosmic Microwave Background Polarization
journal, August 2002

  • Hu, Wayne; Okamoto, Takemi
  • The Astrophysical Journal, Vol. 574, Issue 2
  • DOI: 10.1086/341110

Detection of (dark) matter concentrations via weak gravitational lensing
journal, December 1996


Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear
journal, August 2018


Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


Practical Weak-lensing Shear Measurement with Metacalibration
journal, May 2017


The nature of galaxy bias and clustering
journal, February 2000


Wavelet reconstruction of E and B modes for CMB polarization and cosmic shear analyses
journal, December 2016

  • Leistedt, Boris; McEwen, Jason D.; Büttner, Martin
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 3
  • DOI: 10.1093/mnras/stw3176

Revising the Halofit Model for the Nonlinear Matter Power Spectrum
journal, December 2012

  • Takahashi, Ryuichi; Sato, Masanori; Nishimichi, Takahiro
  • The Astrophysical Journal, Vol. 761, Issue 2
  • DOI: 10.1088/0004-637X/761/2/152

Power spectrum super-sample covariance
journal, June 2013


The dark Energy Camera
journal, October 2015


emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • DOI: 10.1086/670067

Measuring dark energy properties with 3D cosmic shear
journal, November 2006


Advanced ACTPol Cryogenic Detector Arrays and Readout
journal, March 2016

  • Henderson, S. W.; Allison, R.; Austermann, J.
  • Journal of Low Temperature Physics, Vol. 184, Issue 3-4
  • DOI: 10.1007/s10909-016-1575-z

Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

Testing the dark energy consistency with geometry and growth
journal, March 2015


The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology: Galaxy formation and the matter power spectrum
journal, July 2011


Dark Energy Survey Year 1 results: weak lensing shape catalogues
journal, August 2018

  • Zuntz, J.; Sheldon, E.; Samuroff, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2219

Mapping the dark matter with weak gravitational lensing
journal, February 1993

  • Kaiser, Nick; Squires, Gordon
  • The Astrophysical Journal, Vol. 404
  • DOI: 10.1086/172297

Dark Energy Survey Year 1 results: the impact of galaxy neighbours on weak lensing cosmology with im3shape
journal, December 2017

  • Samuroff, S.; Bridle, S. L.; Zuntz, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 4
  • DOI: 10.1093/mnras/stx3282

Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Dark Energy Survey Year 1 results: curved-sky weak lensing mass map
journal, January 2018

  • Chang, C.; Pujol, A.; Mawdsley, B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 3
  • DOI: 10.1093/mnras/stx3363

The skewness of the aperture mass statistic
journal, July 2004


Forecasting cosmological constraints from redshift surveys
journal, August 2009


Looking through the same lens: Shear calibration for LSST, Euclid, and WFIRST with stage 4 CMB lensing
journal, June 2017


Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations
journal, September 2018

  • Cawthon, R.; Davis, C.; Gatti, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 2
  • DOI: 10.1093/mnras/sty2424

Cross-Correlation Tomography: Measuring Dark Energy Evolution with Weak Lensing
journal, October 2003


Joint measurement of lensing–galaxy correlations using SPT and DES SV data
journal, July 2016

  • Baxter, E.; Clampitt, J.; Giannantonio, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 4
  • DOI: 10.1093/mnras/stw1584

The Dark Energy Survey: more than dark energy – an overview
journal, March 2016

  • Abbott, T.; Abdalla, F. B.; Aleksic, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2, p. 1270-1299
  • DOI: 10.1093/mnras/stw641

3D weak lensing
journal, August 2003


Measuring distance ratios with CMB-galaxy lensing cross-correlations
journal, February 2009


Dark Energy Survey Year 1 results: cross-correlation redshifts – methods and systematics characterization
journal, February 2018

  • Gatti, M.; Vielzeuf, P.; Davis, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 477, Issue 2
  • DOI: 10.1093/mnras/sty466

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data
journal, May 2017

  • Melchior, P.; Gruen, D.; McClintock, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 4
  • DOI: 10.1093/mnras/stx1053

CMB cluster lensing: Cosmography with the longest lever arm
journal, December 2007


Metric Tests for Curvature from Weak Lensing and Baryon Acoustic Oscillations
journal, February 2006

  • Bernstein, G.
  • The Astrophysical Journal, Vol. 637, Issue 2
  • DOI: 10.1086/498079

Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters
journal, October 2018

  • McClintock, T.; Varga, T. N.; Gruen, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 1
  • DOI: 10.1093/mnras/sty2711

Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing
journal, April 2017


A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data
journal, November 2017


ChainConsumer
journal, August 2016


Mitigating foreground biases in CMB lensing reconstruction using cleaned gradients
journal, July 2018


Separating intrinsic alignment and galaxy-galaxy lensing
journal, May 2012

  • Blazek, Jonathan; Mandelbaum, Rachel; Seljak, Uroš
  • Journal of Cosmology and Astroparticle Physics, Vol. 2012, Issue 05
  • DOI: 10.1088/1475-7516/2012/05/041

Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
journal, April 2018

  • Hoyle, B.; Gruen, D.; Bernstein, G. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty957

Dark Energy Survey year 1 results: Galaxy clustering for combined probes
journal, August 2018


Why your model parameter confidences might be too optimistic. Unbiased estimation of the inverse covariance matrix
journal, December 2006


Dark Energy Survey year 1 results: Galaxy-galaxy lensing
journal, August 2018


redMaGiC: selecting luminous red galaxies from the DES Science Verification data
journal, May 2016

  • Rozo, E.; Rykoff, E. S.; Abate, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 2
  • DOI: 10.1093/mnras/stw1281

Cosmological implications of baryon acoustic oscillation measurements
journal, December 2015