skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ coherent diffractive imaging

Abstract

Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, X-ray free-electron laser, high harmonic generation, electrons, and optical lasers. One of CDI’s important applications is to probe dynamic phenomena with high spatiotemporal resolution. Here, we report the development of a general in situ CDI method for real-time imaging of dynamic processes in solution. By introducing a time-invariant overlapping region as real-space constraint, we simultaneously reconstructed a time series of complex exit wave of dynamic processes with robust and fast convergence. We validated this method using optical laser experiments and numerical simulations with coherent X-rays. Our numerical simulations further indicated that in situ CDI can potentially reduce radiation dose by more than an order of magnitude relative to conventional CDI. With further development, we envision in situ CDI could be applied to probe a range of dynamic phenomena in the future.

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [3];  [3]
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy, California NanoSystems Inst., and Dept. of Bioengineering
  2. Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and California NanoSystems Inst.; Shanghai Jiao Tong Univ. (China). Dept. of Physics and Astronomy
  3. Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and California NanoSystems Inst.
  4. Univ. of California, Los Angeles, CA (United States). Dept. of Bioengineering
Publication Date:
Research Org.:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1523505
Grant/Contract Number:  
[SC0010378]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 9; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Lo, Yuan Hung, Zhao, Lingrong, Gallagher-Jones, Marcus, Rana, Arjun, J. Lodico, Jared, Xiao, Weikun, Regan, B. C., and Miao, Jianwei. In situ coherent diffractive imaging. United States: N. p., 2018. Web. doi:10.1038/s41467-018-04259-9.
Lo, Yuan Hung, Zhao, Lingrong, Gallagher-Jones, Marcus, Rana, Arjun, J. Lodico, Jared, Xiao, Weikun, Regan, B. C., & Miao, Jianwei. In situ coherent diffractive imaging. United States. doi:10.1038/s41467-018-04259-9.
Lo, Yuan Hung, Zhao, Lingrong, Gallagher-Jones, Marcus, Rana, Arjun, J. Lodico, Jared, Xiao, Weikun, Regan, B. C., and Miao, Jianwei. Tue . "In situ coherent diffractive imaging". United States. doi:10.1038/s41467-018-04259-9. https://www.osti.gov/servlets/purl/1523505.
@article{osti_1523505,
title = {In situ coherent diffractive imaging},
author = {Lo, Yuan Hung and Zhao, Lingrong and Gallagher-Jones, Marcus and Rana, Arjun and J. Lodico, Jared and Xiao, Weikun and Regan, B. C. and Miao, Jianwei},
abstractNote = {Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, X-ray free-electron laser, high harmonic generation, electrons, and optical lasers. One of CDI’s important applications is to probe dynamic phenomena with high spatiotemporal resolution. Here, we report the development of a general in situ CDI method for real-time imaging of dynamic processes in solution. By introducing a time-invariant overlapping region as real-space constraint, we simultaneously reconstructed a time series of complex exit wave of dynamic processes with robust and fast convergence. We validated this method using optical laser experiments and numerical simulations with coherent X-rays. Our numerical simulations further indicated that in situ CDI can potentially reduce radiation dose by more than an order of magnitude relative to conventional CDI. With further development, we envision in situ CDI could be applied to probe a range of dynamic phenomena in the future.},
doi = {10.1038/s41467-018-04259-9},
journal = {Nature Communications},
number = [1],
volume = [9],
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Schematic layout of the experimental geometry and the phase retrieval of in situ CDI. a A coherent wave illuminates a dual-pinhole aperture to create a static and a dynamic region, S (r) and Dt (r). A sample in the dynamic region changes its structure over time and amore » time series of diffraction patterns are collected by a detector. b By using the static region as a powerful time-invariant constraint in real space, the in situ CDI algorithm iterates between real and reciprocal space and simultaneously reconstructs a time series of complex exit waves of the dynamic processes in the sample with robust and fast convergence. ℱ and ℱ−1 represent the fast Fourier transform and its inverse, respectively« less

Save / Share:

Works referenced in this record:

Single mimivirus particles intercepted and imaged with an X-ray laser
journal, February 2011

  • Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.
  • Nature, Vol. 470, Issue 7332
  • DOI: 10.1038/nature09748

Three-Dimensional Visualization of a Human Chromosome Using Coherent X-Ray Diffraction
journal, January 2009


X-ray imaging detectors for synchrotron and XFEL sources
journal, April 2015


Coherent X-ray diffraction imaging of strain at the nanoscale
journal, April 2009

  • Robinson, Ian; Harder, Ross
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2400

Topological defect dynamics in operando battery nanoparticles
journal, June 2015


Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens
journal, July 1999

  • Miao, Jianwei; Charalambous, Pambos; Kirz, Janos
  • Nature, Vol. 400, Issue 6742
  • DOI: 10.1038/22498

High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
journal, April 2010

  • Nelson, J.; Huang, X.; Steinbrener, J.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 16
  • DOI: 10.1073/pnas.0910874107

Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy
journal, August 2012

  • Greenbaum, Alon; Luo, Wei; Su, Ting-Wei
  • Nature Methods, Vol. 9, Issue 9
  • DOI: 10.1038/nmeth.2114

Beyond crystallography: Diffractive imaging using coherent x-ray light sources
journal, April 2015


Lensless Diffractive Imaging Using Tabletop Coherent High-Harmonic Soft-X-Ray Beams
journal, August 2007


Three-Dimensional Coherent X-Ray Diffraction Imaging of Molten Iron in Mantle Olivine at Nanoscale Resolution
journal, May 2013


Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals
journal, January 2017


High-resolution ab initio three-dimensional x-ray diffraction microscopy
journal, January 2006

  • Chapman, Henry N.; Barty, Anton; Marchesini, Stefano
  • Journal of the Optical Society of America A, Vol. 23, Issue 5
  • DOI: 10.1364/JOSAA.23.001179

Ultrafast soft X-ray scattering and reference-enhanced diffractive imaging of weakly scattering nanoparticles
journal, November 2008

  • Boutet, Sébastien; Bogan, Michael J.; Barty, Anton
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 166-167
  • DOI: 10.1016/j.elspec.2008.06.004

High-Resolution Scanning X-ray Diffraction Microscopy
journal, July 2008


Three-dimensional mapping of a deformation field inside a nanocrystal
journal, July 2006

  • Pfeifer, Mark A.; Williams, Garth J.; Vartanyants, Ivan A.
  • Nature, Vol. 442, Issue 7098
  • DOI: 10.1038/nature04867

Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise
journal, January 2014

  • Kim, Chan; Kim, Yoonhee; Song, Changyong
  • Optics Express, Vol. 22, Issue 23
  • DOI: 10.1364/OE.22.029161

Lensless imaging of magnetic nanostructures by X-ray spectro-holography
journal, December 2004

  • Eisebitt, S.; Lüning, J.; Schlotter, W. F.
  • Nature, Vol. 432, Issue 7019
  • DOI: 10.1038/nature03139

Sparsity-based single-shot subwavelength coherent diffractive imaging
journal, April 2012

  • Szameit, A.; Shechtman, Y.; Osherovich, E.
  • Nature Materials, Vol. 11, Issue 5
  • DOI: 10.1038/nmat3289

Relaxed averaged alternating reflections for diffraction imaging
journal, November 2004


Keyhole coherent diffractive imaging
journal, March 2008

  • Abbey, Brian; Nugent, Keith A.; Williams, Garth J.
  • Nature Physics, Vol. 4, Issue 5
  • DOI: 10.1038/nphys896

Chemical composition mapping with nanometre resolution by soft X-ray microscopy
journal, September 2014


Phase Retrieval with Application to Optical Imaging: A contemporary overview
journal, May 2015

  • Shechtman, Yoav; Eldar, Yonina C.; Cohen, Oren
  • IEEE Signal Processing Magazine, Vol. 32, Issue 3
  • DOI: 10.1109/MSP.2014.2352673

Opportunities and challenges in liquid cell electron microscopy
journal, December 2015


Femtosecond diffractive imaging with a soft-X-ray free-electron laser
journal, November 2006

  • Chapman, Henry N.; Barty, Anton; Bogan, Michael J.
  • Nature Physics, Vol. 2, Issue 12
  • DOI: 10.1038/nphys461

Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro
journal, January 2016


Quantitative biological imaging by ptychographic x-ray diffraction microscopy
journal, December 2009

  • Giewekemeyer, K.; Thibault, P.; Kalbfleisch, S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 2
  • DOI: 10.1073/pnas.0905846107

Method to enhance the resolution of x-ray coherent diffraction imaging for non-crystalline bio-samples
journal, March 2014


Signal enhancement and Patterson-search phasing for high-spatial-resolution coherent X-ray diffraction imaging of biological objects
journal, January 2015

  • Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08074

In Situ Transmission Electron Microscopy of Lead Dendrites and Lead Ions in Aqueous Solution
journal, June 2012

  • White, Edward R.; Singer, Scott B.; Augustyn, Veronica
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn3017469

Coherent x-ray diffraction imaging of photo-induced structural changes in BiFeO 3 nanocrystals
journal, September 2016


Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities
journal, February 2013

  • Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun
  • Journal of Applied Crystallography, Vol. 46, Issue 2
  • DOI: 10.1107/S0021889813002471

Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy
journal, June 2010

  • Jiang, H.; Song, C.; Chen, C. -C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 25
  • DOI: 10.1073/pnas.1000156107

Dichroic coherent diffractive imaging
journal, August 2011

  • Tripathi, A.; Mohanty, J.; Dietze, S. H.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1104304108

The brain tumor microenvironment
journal, March 2011

  • Charles, Nikki A.; Holland, Eric C.; Gilbertson, Richard
  • Glia, Vol. 59, Issue 8
  • DOI: 10.1002/glia.21136

Phase-Diverse Coherent Diffractive Imaging: High Sensitivity with Low Dose
journal, January 2011


Biological imaging by soft x-ray diffraction microscopy
journal, October 2005

  • Shapiro, D.; Thibault, P.; Beetz, T.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 43
  • DOI: 10.1073/pnas.0503305102

An improved ptychographical phase retrieval algorithm for diffractive imaging
journal, September 2009


Soft X-ray microscopes and their biological applications
journal, February 1995

  • Kirz, Janos; Jacobsen, Chris; Howells, Malcolm
  • Quarterly Reviews of Biophysics, Vol. 28, Issue 1
  • DOI: 10.1017/S0033583500003139

A compact X-ray free-electron laser emitting in the sub-ångström region
journal, June 2012


High-Resolution Imaging by Fourier Transform X-ray Holography
journal, May 1992


Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
journal, January 1998

  • Miao, J.; Sayre, D.; Chapman, H. N.
  • Journal of the Optical Society of America A, Vol. 15, Issue 6
  • DOI: 10.1364/JOSAA.15.001662

In Situ Bragg Coherent Diffraction Imaging Study of a Cement Phase Microcrystal during Hydration
journal, May 2015

  • Liu, Xianping; Aranda, Miguel A. G.; Chen, Bo
  • Crystal Growth & Design, Vol. 15, Issue 7
  • DOI: 10.1021/cg5013389

First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries
journal, March 2012

  • Nelson, Johanna; Misra, Sumohan; Yang, Yuan
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja2121926

Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers
journal, June 2012


X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92
journal, July 1993

  • Henke, B. L.; Gullikson, E. M.; Davis, J. C.
  • Atomic Data and Nuclear Data Tables, Vol. 54, Issue 2, p. 181-342
  • DOI: 10.1006/adnd.1993.1013

Quantitative Imaging of Single, Unstained Viruses with Coherent X Rays
journal, October 2008


Phase retrieval algorithms: a comparison
journal, January 1982


An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy
journal, March 2009

  • Howells, M. R.; Beetz, T.; Chapman, H. N.
  • Journal of Electron Spectroscopy and Related Phenomena, Vol. 170, Issue 1-3
  • DOI: 10.1016/j.elspec.2008.10.008

Ptychographic X-ray computed tomography at the nanoscale
journal, September 2010

  • Dierolf, Martin; Menzel, Andreas; Thibault, Pierre
  • Nature, Vol. 467, Issue 7314
  • DOI: 10.1038/nature09419

Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy
journal, November 2008

  • de Smit, Emiel; Swart, Ingmar; Creemer, J. Fredrik
  • Nature, Vol. 456, Issue 7219
  • DOI: 10.1038/nature07516

Massively parallel X-ray holography
journal, August 2008

  • Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.
  • Nature Photonics, Vol. 2, Issue 9
  • DOI: 10.1038/nphoton.2008.154

Nanoscale Imaging of Buried Structures with Elemental Specificity Using Resonant X-Ray Diffraction Microscopy
journal, January 2008


Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals
journal, May 2013


Enhancing resolution in coherent x-ray diffraction imaging
journal, October 2016


Hard-X-Ray Lensless Imaging of Extended Objects
journal, January 2007


Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source
journal, March 2017

  • Gardner, Dennis F.; Tanksalvala, Michael; Shanblatt, Elisabeth R.
  • Nature Photonics, Vol. 11, Issue 4
  • DOI: 10.1038/nphoton.2017.33

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

High-resolution non-destructive three-dimensional imaging of integrated circuits
journal, March 2017

  • Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.
  • Nature, Vol. 543, Issue 7645
  • DOI: 10.1038/nature21698

Wide-field, high-resolution Fourier ptychographic microscopy
journal, July 2013


Imaging live cell in micro-liquid enclosure by X-ray laser diffraction
journal, January 2014

  • Kimura, Takashi; Joti, Yasumasa; Shibuya, Akemi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4052

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.