DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction

Abstract

Elemental intermixing at the CdS/CuIn1-xGaxSe2 (CIGS) heterojunction in thin-film photovoltaic devices plays a crucial role in carrier separation and thus device efficiency. Here, using scanning transmission electron microcopy in combination with energy dispersive X-ray mapping, we find that by controlling the oxygen in the sputtering gas during physical vapor deposition (PVD) of the CdS, we can tailor the degree of elemental intermixing. More oxygen suppresses Cu migration from the CIGS into the CdS, while facilitating Zn doping in the CdS from the ZnO transparent contact. Very high oxygen levels induce nanocrystallinity in the CdS, while moderate or no oxygen content can promote complete CdS epitaxy on the CIGS grains. Regions of cubic Cu2S phase were observed in the Cu-rich CdCuS when no oxygen is included in the CdS deposition process. In the process-of-record sample (moderate O2) that exhibits the highest solar conversion efficiency, we observe a ~26-nm-thick Cu-deficient CIGS surface counter-doped with the highest Cd concentration among all of the samples. Cd movement into the CIGS was found to be less than 10 nm deep for samples with either high or zero O2 . Lastly, the results are consistent with the expectation that Cd doping of the CIGS surface and lackmore » of Zn diffusion into the buffer both enhance device performance.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [4];  [4];  [4];  [4];  [4];  [3];  [5]
  1. University of Illinois at Urbana‐Champaign, Urbana, IL (United States); Univ. of Missouri, Columbia, MO (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. MiaSolé Hi‐Tech, Santa Clara, CA (United States)
  5. University of Illinois at Urbana‐Champaign, Urbana, IL (United States); Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1515358
Alternate Identifier(s):
OSTI ID: 1506409; OSTI ID: 1786624
Report Number(s):
LLNL-JRNL-751864
Journal ID: ISSN 1062-7995; 937854
Grant/Contract Number:  
AC52-07NA27344; AC02-05CH11231; AC52‐07NA27344; DE‐AC02‐05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Progress in Photovoltaics
Additional Journal Information:
Journal Volume: 27; Journal Issue: 3; Journal ID: ISSN 1062-7995
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; CdS structure; Cu (In,Ga)Se2 photovoltaics; Cu diffusion; scanning transmission electron microscopy; STEM‐EDS mapping

Citation Formats

He, Xiaoqing, Ercius, Peter, Varley, Joel B., Bailey, Jeff, Zapalac, Geordie, Nagle, Tim, Poplavskyy, Dmitry, Mackie, Neil, Bayman, Atiye, Lordi, Vincenzo, and Rockett, Angus. The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction. United States: N. p., 2018. Web. doi:10.1002/pip.3087.
He, Xiaoqing, Ercius, Peter, Varley, Joel B., Bailey, Jeff, Zapalac, Geordie, Nagle, Tim, Poplavskyy, Dmitry, Mackie, Neil, Bayman, Atiye, Lordi, Vincenzo, & Rockett, Angus. The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction. United States. https://doi.org/10.1002/pip.3087
He, Xiaoqing, Ercius, Peter, Varley, Joel B., Bailey, Jeff, Zapalac, Geordie, Nagle, Tim, Poplavskyy, Dmitry, Mackie, Neil, Bayman, Atiye, Lordi, Vincenzo, and Rockett, Angus. Thu . "The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction". United States. https://doi.org/10.1002/pip.3087. https://www.osti.gov/servlets/purl/1515358.
@article{osti_1515358,
title = {The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu (InGa)Se2 heterojunction},
author = {He, Xiaoqing and Ercius, Peter and Varley, Joel B. and Bailey, Jeff and Zapalac, Geordie and Nagle, Tim and Poplavskyy, Dmitry and Mackie, Neil and Bayman, Atiye and Lordi, Vincenzo and Rockett, Angus},
abstractNote = {Elemental intermixing at the CdS/CuIn1-xGaxSe2 (CIGS) heterojunction in thin-film photovoltaic devices plays a crucial role in carrier separation and thus device efficiency. Here, using scanning transmission electron microcopy in combination with energy dispersive X-ray mapping, we find that by controlling the oxygen in the sputtering gas during physical vapor deposition (PVD) of the CdS, we can tailor the degree of elemental intermixing. More oxygen suppresses Cu migration from the CIGS into the CdS, while facilitating Zn doping in the CdS from the ZnO transparent contact. Very high oxygen levels induce nanocrystallinity in the CdS, while moderate or no oxygen content can promote complete CdS epitaxy on the CIGS grains. Regions of cubic Cu2S phase were observed in the Cu-rich CdCuS when no oxygen is included in the CdS deposition process. In the process-of-record sample (moderate O2) that exhibits the highest solar conversion efficiency, we observe a ~26-nm-thick Cu-deficient CIGS surface counter-doped with the highest Cd concentration among all of the samples. Cd movement into the CIGS was found to be less than 10 nm deep for samples with either high or zero O2 . Lastly, the results are consistent with the expectation that Cd doping of the CIGS surface and lack of Zn diffusion into the buffer both enhance device performance.},
doi = {10.1002/pip.3087},
journal = {Progress in Photovoltaics},
number = 3,
volume = 27,
place = {United States},
year = {Thu Dec 20 00:00:00 EST 2018},
month = {Thu Dec 20 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modelling polycrystalline semiconductor solar cells
journal, February 2000


Interface properties and band alignment of Cu2S/CdS thin film solar cells
journal, May 2003


Cd doping at the CuInSe2/CdS heterojunction
journal, June 2003

  • Liao, Dongxiang; Rockett, Angus
  • Journal of Applied Physics, Vol. 93, Issue 11
  • DOI: 10.1063/1.1570500

New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%
journal, January 2011

  • Jackson, Philip; Hariskos, Dimitrios; Lotter, Erwin
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 7
  • DOI: 10.1002/pip.1078

Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films during chemical-bath deposition process of CdS films
journal, April 1999

  • Nakada, T.; Kunioka, A.
  • Applied Physics Letters, Vol. 74, Issue 17
  • DOI: 10.1063/1.123875

The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S) 2 -based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se 2 solar cells
journal, November 2009

  • Hariskos, D.; Fuchs, B.; Menner, R.
  • Progress in Photovoltaics: Research and Applications, Vol. 17, Issue 7
  • DOI: 10.1002/pip.897

Electrical properties of point defects in CdS and ZnS
journal, September 2013

  • Varley, J. B.; Lordi, V.
  • Applied Physics Letters, Vol. 103, Issue 10
  • DOI: 10.1063/1.4819492

Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments
journal, August 2010

  • Naghavi, N.; Abou-Ras, D.; Allsop, N.
  • Progress in Photovoltaics: Research and Applications, Vol. 18, Issue 6, p. 411-433
  • DOI: 10.1002/pip.955

CuInSe 2 for photovoltaic applications
journal, October 1991

  • Rockett, A.; Birkmire, R. W.
  • Journal of Applied Physics, Vol. 70, Issue 7
  • DOI: 10.1063/1.349175

Prospects for in situ junction formation in CuInSe2 based solar cells
journal, July 1998

  • Ramanathan, Kannan; Noufi, Rommel; Granata, Jennifer
  • Solar Energy Materials and Solar Cells, Vol. 55, Issue 1-2
  • DOI: 10.1016/S0927-0248(98)00042-7

High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer
journal, March 2001


Chemical reactions at CdS heterojunctions with CuInSe 2
journal, March 2013

  • Aquino, Angel; Rockett, Angus
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 31, Issue 2
  • DOI: 10.1116/1.4775341

Photovoltaic Properties of Cu 2 S–CdS Heterojunctions
journal, August 1970

  • Gill, W. D.; Bube, R. H.
  • Journal of Applied Physics, Vol. 41, Issue 9
  • DOI: 10.1063/1.1659500

The CuInSe2–CuGaSe2–2CdSe system and crystal growth of the γ-solid solutions
journal, August 2010


Cd doping at PVD-CdS/CuInGaSe2 heterojunctions
journal, May 2017


Intermixing and Formation of Cu-Rich Secondary Phases at Sputtered CdS/CuInGaSe 2 Heterojunctions
journal, September 2016


Optimization of CdTe thin-film solar cell efficiency using a sputtered, oxygenated CdS window layer: Optimization of CdTe thin-film solar cell efficiency using a sputtered, oxygenated CdS window layer
journal, January 2015

  • Kephart, Jason M.; Geisthardt, Russell M.; Sampath, W. S.
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 11
  • DOI: 10.1002/pip.2578

Scripting-customised microscopy tools for Digital Micrograph™
journal, July 2005


Solar cell efficiency tables (version 43): Solar cell efficiency tables
journal, December 2013

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 22, Issue 1
  • DOI: 10.1002/pip.2452

Influence of oxygen concentration in the CdCl 2 treatment process on the photovoltaic properties of CdTe/CdS solar cells
journal, May 2015


Cu depletion at the CuInSe2 surface
journal, April 2003

  • Liao, Dongxiang; Rockett, Angus
  • Applied Physics Letters, Vol. 82, Issue 17
  • DOI: 10.1063/1.1570516

19·9%-efficient ZnO/CdS/CuInGaSe 2 solar cell with 81·2% fill factor
journal, May 2008

  • Repins, Ingrid; Contreras, Miguel A.; Egaas, Brian
  • Progress in Photovoltaics: Research and Applications, Vol. 16, Issue 3
  • DOI: 10.1002/pip.822

New Cd-free buffer layer deposited by PVD: In2S3 containing Na compounds
journal, May 2003


Properties of reactively sputtered oxygenated cadmium sulfide (CdS:O) and their impact on CdTe solar cell performance
journal, March 2015

  • Meysing, Daniel M.; Wolden, Colin A.; Griffith, Michelle M.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 33, Issue 2
  • DOI: 10.1116/1.4903214

Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
journal, March 2004

  • Romeo, A.; Terheggen, M.; Abou-Ras, D.
  • Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 23, p. 93-111
  • DOI: 10.1002/pip.527

Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods
journal, April 2009

  • Sadtler, Bryce; Demchenko, Denis O.; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 131, Issue 14
  • DOI: 10.1021/ja809854q

Formation of the physical vapor deposited CdS∕Cu(In,Ga)Se2 interface in highly efficient thin film solar cells
journal, April 2006

  • Rusu, M.; Glatzel, Th.; Neisser, A.
  • Applied Physics Letters, Vol. 88, Issue 14
  • DOI: 10.1063/1.2190768

Optimal and near‐optimal filters in high‐resolution electron microscopy
journal, April 1998


Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics
journal, July 2017


The CdS/Cu2 solar cell
journal, September 1982


Vapor phase treatment of CdTe/CdS thin films with CdCl/sub 2/:O/sub 2/
conference, January 1996

  • McCandless, B. E.; Hichri, H.; Hanket, G.
  • Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996
  • DOI: 10.1109/PVSC.1996.564244

Works referencing / citing this record:

Alcohol Vapor Post‐Annealing for Highly Efficient Sb 2 S 3 Planar Heterojunction Solar Cells
journal, May 2019