DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plastic deformation and material transfer on steel gage blocks during low force mechanical probing

Journal Article · · Precision Engineering

Contact probing of gaging surfaces is enabled throughout dimensional metrology. Probe tips such as ruby, sapphire, or diamond are commonly employed as styli for universal length measuring machines (ULMs) and coordinate measuring machines (CMMs) due to the hardness, durability, and wear resistance. Gaging surfaces of gage blocks are precision ground or lapped, with very low surface roughness to enable wringing. Damage or contamination of these surfaces can prevent wringing and lead to measurement error. Experimental investigations using a horizontal ULM and CMM have revealed that even at low force settings (≤0.16 N), probe materials such as ruby and sapphire can cause plastic deformation to hardened carbon chrome steel (such as AISI 52,100) gage block surfaces at the microscale, likely attributed to fretting-associated wear. Under some conditions, permanent transfer of material from the probe stylus to the gaging surface is possible. Results show irreversible changes and damage to gaging surfaces with repeated probe contact on a ULM and CMM. Optical microscopy, optical profilometry, and scanning electron microscopy (SEM) provide a semi-quantitative assessment of microscale plastic deformation and material transfer. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and Raman techniques validate chemical constituency of reference materials used (gage blocks and probes) and also identify makeup of deposits on gaging surfaces following probe contact.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC04-94AL85000; NA0003525
OSTI ID:
1515198
Report Number(s):
SAND-2019-4776J; 675087
Journal Information:
Precision Engineering, Vol. 57, Issue C; ISSN 0141-6359
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English