skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic field-temperature phase diagram of multiferroic [ ( CH 3 ) 2 NH 2 ] Mn ( HCOO ) 3

Abstract

We combined here pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic $$[{({\mathrm{CH}}_{3})}_{2}{\mathrm{NH}}_{2}]\mathrm{Mn}{(\mathrm{HCOO})}_{3}$$. Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [6];  [4];  [7]
  1. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
  2. North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Pohang Univ. of Science and Technology (POSTECH) (Korea, Republic of). Dept. of Chemistry
  3. Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry. National High Magnetic Field Lab. (MagLab); National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Nanoscale Science and Technology
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry. National High Magnetic Field Lab. (MagLab)
  6. North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry
  7. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry. Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Tennessee, Knoxville, TN (United States); Florida State Univ., Tallahassee, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1514966
Report Number(s):
LA-UR-17-27392
Journal ID: ISSN 2469-9950
Grant/Contract Number:  
89233218CNA000001; DMR-1707846; CHE 1464955; DMR-1157490
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 10; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; antiferromagnetism; magnetic phase transitions; molecular magnetism; phase diagrams

Citation Formats

Clune, A. J., Hughey, K. D., Lee, C., Abhyankar, N., Ding, X., Dalal, N. S., Whangbo, M. -H., Singleton, J., and Musfeldt, J. L. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.104424.
Clune, A. J., Hughey, K. D., Lee, C., Abhyankar, N., Ding, X., Dalal, N. S., Whangbo, M. -H., Singleton, J., & Musfeldt, J. L. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3. United States. doi:10.1103/PhysRevB.96.104424.
Clune, A. J., Hughey, K. D., Lee, C., Abhyankar, N., Ding, X., Dalal, N. S., Whangbo, M. -H., Singleton, J., and Musfeldt, J. L. Mon . "Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3". United States. doi:10.1103/PhysRevB.96.104424. https://www.osti.gov/servlets/purl/1514966.
@article{osti_1514966,
title = {Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2]Mn(HCOO)3},
author = {Clune, A. J. and Hughey, K. D. and Lee, C. and Abhyankar, N. and Ding, X. and Dalal, N. S. and Whangbo, M. -H. and Singleton, J. and Musfeldt, J. L.},
abstractNote = {We combined here pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic $[{({\mathrm{CH}}_{3})}_{2}{\mathrm{NH}}_{2}]\mathrm{Mn}{(\mathrm{HCOO})}_{3}$. Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.},
doi = {10.1103/PhysRevB.96.104424},
journal = {Physical Review B},
number = 10,
volume = 96,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Crystal structure of [(CH3)2NH2]Mn(HCOO)3 in the low temperature phase. (b) Schematic depicting the electric and magnetic transitions that occur in this compound. (FE = ferroelectric, PE = paraelectric, cAFM = canted antiferromagnetic, and PM = paramagnetic)

Save / Share:

Works referenced in this record:

Strong spin-phonon coupling in infrared and Raman spectra of SrMnO 3
journal, February 2014


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Magnetic nanopantograph in the SrCu 2 (BO 3 ) 2 Shastry–Sutherland lattice
journal, February 2015

  • Radtke, Guillaume; Saúl, Andrés; Dabkowska, Hanna A.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 7
  • DOI: 10.1073/pnas.1421414112

Magnetic-field-induced color change in α -Fe 2 O 3 single crystals
journal, May 2012


Electron-Phonon and Magnetoelastic Interactions in Ferromagnetic Co [ N ( CN ) 2 ] 2
journal, July 2013


Projector augmented-wave method
journal, December 1994


Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets
journal, August 2008


Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
journal, October 2003


A 3D Porous Cobalt−Organic Framework Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition
journal, November 2007

  • Huang, You-Gui; Yuan, Da-Qiang; Pan, Long
  • Inorganic Chemistry, Vol. 46, Issue 23
  • DOI: 10.1021/ic700559z

Magnetic Susceptibility of α Fe 2 O 3 and α Fe 2 O 3 with Added Titanium
journal, June 1950


Multiferroics of spin origin
journal, July 2014


Magnetic Structure and Exchange Interactions in Quasi-One-Dimensional MnCl 2 (urea) 2
journal, December 2015


Spin-Flopping in MnF2 by High Magnetic Fields
journal, March 1961


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Understanding Ferroelectricity in the Pb-Free Perovskite-Like Metal–Organic Framework [(CH 3 ) 2 NH 2 ]Zn(HCOO) 3 : Dielectric, 2D NMR, and Theoretical Studies
journal, March 2017

  • Abhyankar, Nandita; Kweon, Jin Jung; Orio, Maylis
  • The Journal of Physical Chemistry C, Vol. 121, Issue 11
  • DOI: 10.1021/acs.jpcc.7b00596

Magnetoelectric coupling in the paramagnetic state of a metal-organic framework
journal, June 2013

  • Wang, W.; Yan, L. -Q.; Cong, J. -Z.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02024

Cross coupling between electric and magnetic orders in a multiferroic metal-organic framework
journal, August 2014

  • Tian, Ying; Stroppa, Alessandro; Chai, Yisheng
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06062

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Combining microscopic and macroscopic probes to untangle the single-ion anisotropy and exchange energies in an S = 1 quantum antiferromagnet
journal, April 2017


Magnetochromic effect in multiferroic R In 1 x Mn x O 3 ( R = Tb , Dy)
journal, May 2015


Quantum Critical Transition Amplifies Magnetoelastic Coupling in Mn [ N ( CN ) 2 ] 2
journal, June 2013


Efficient synthesis and tailoring of magnetic and dielectric properties of Pb-free perovskite-like ABX 3 metal-organic frameworks
journal, July 2016

  • Abhyankar, Nandita; Lee, Minseong; Foley, Megan
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 10, Issue 8
  • DOI: 10.1002/pssr.201600175

Quantum criticality
journal, January 2005


Quantum Tunneling of Magnetization in a Metal-Organic Framework
journal, January 2014


Magnetic field induced quantum phase transition of the S = 1 2 antiferromagnet K 2 NaCrO 8
journal, February 2010


Electric Control of Magnetization and Interplay between Orbital Ordering and Ferroelectricity in a Multiferroic Metal-Organic Framework
journal, May 2011

  • Stroppa, Alessandro; Jain, Prashant; Barone, Paolo
  • Angewandte Chemie International Edition, Vol. 50, Issue 26
  • DOI: 10.1002/anie.201101405

Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni 3 TeO 6
journal, September 2015


Strong spin-lattice coupling in CrSiTe 3
journal, April 2015

  • Casto, L. D.; Clune, A. J.; Yokosuk, M. O.
  • APL Materials, Vol. 3, Issue 4
  • DOI: 10.1063/1.4914134

Multiferroic Behavior Associated with an Order−Disorder Hydrogen Bonding Transition in Metal−Organic Frameworks (MOFs) with the Perovskite ABX 3 Architecture
journal, September 2009

  • Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J.
  • Journal of the American Chemical Society, Vol. 131, Issue 38
  • DOI: 10.1021/ja904156s

Evolution of magnetic interactions in a pressure-induced Jahn-Teller driven magnetic dimensionality switch
journal, June 2013


Antiferromagnetic Spin Seebeck Effect
journal, March 2016


Perovskite-like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials
journal, July 2004

  • Wang, Xin-Yi; Gan, Lin; Zhang, Shi-Wei
  • Inorganic Chemistry, Vol. 43, Issue 15
  • DOI: 10.1021/ic0498081

Magnetic behavior of the metal organic framework [(CH 3 ) 2 NH 2 ]Co(HCOO) 3
journal, January 2015

  • Vinod, K.; Deepak, C. S.; Sharma, Shilpam
  • RSC Advances, Vol. 5, Issue 47
  • DOI: 10.1039/C5RA01417D

Magnetoelectric Coupling through the Spin Flop Transition in Ni 3 TeO 6
journal, September 2016


Local structure of the metal–organic perovskite dimethylammonium manganese( ii ) formate
journal, January 2016

  • Duncan, Helen D.; Dove, Martin T.; Keen, David A.
  • Dalton Transactions, Vol. 45, Issue 10
  • DOI: 10.1039/C5DT03687A

Switchable electric polarization and ferroelectric domains in a metal-organic-framework
journal, September 2016


    Works referencing / citing this record:

    On the origin of ferroelectric structural phases in perovskite-like metal–organic formate
    journal, January 2018

    • Sieradzki, Adam; Mączka, Mirosław; Simenas, Mantas
    • Journal of Materials Chemistry C, Vol. 6, Issue 35
    • DOI: 10.1039/c8tc02421a

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.