skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability of new exact solutions of the nonlinear Schrödinger equation in a Pöschl–Teller external potential

Abstract

Here, we discuss the stability properties of the solutions of the general nonlinear Schrödinger equation in 1 + 1 dimensions in an external potential derivable from a parity-time ($$ \newcommand{\PT}{\mathcal{PT}} \PT$$ ) symmetric superpotential $W(x)$ that we considered earlier in Kevrekidis et al (2015 Phys. Rev. E 92 042901). In particular we consider the nonlinear partial differential equation $$ \{i \, \partial_t + \partial_x^2 - V(x) + g \vert \psi(x, t) \vert ^{2\kappa} \} \, \psi(x, t) = 0 \>, $$ for arbitrary nonlinearity parameter κ, where $$g= \pm1$$ and V is the well known Pöschl–Teller potential which we allow to be repulsive as well as attractive. Using energy landscape methods, linear stability analysis as well as a time dependent variational approximation, we derive consistent analytic results for the domains of instability of these new exact solutions as a function of the strength of the external potential and κ. For the repulsive potential we show that there is a translational instability which can be understood in terms of the energy landscape as a function of a stretching parameter and a translation parameter being a saddle near the exact solution. In this case, numerical simulations show that if we start with the exact solution, the initial wave function breaks into two pieces traveling in opposite directions. If we explore the slightly perturbed solution situations, a 1% change in initial conditions can change significantly the details of how the wave function breaks into two separate pieces. For the attractive potential, changing the initial conditions by 1% modifies the domain of stability only slightly. For the case of the attractive potential and negative g perturbed solutions merely oscillate with the oscillation frequencies predicted by the variational approximation.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7]; ORCiD logo [8]
  1. Univ. of New Hampshire, Durham, NH (United States)
  2. The Santa Fe Institute, Santa Fe, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Savitribai Phule Pune Univ., Pune (India)
  4. National Science Foundation, Arlington, VA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Pontifical Catholic Univ. of Chile, Santiago (Chile)
  6. Texas A & M Univ., College Station, TX (United States)
  7. Texas A & M Univ., College Station, TX (United States); St. Petersburg State Univ., St. Petersburg (Russia); Institute for Information Transmission Problems, Moscow (Russia)
  8. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1514934
Report Number(s):
LA-UR-17-23542
Journal ID: ISSN 1751-8113
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physics. A, Mathematical and Theoretical
Additional Journal Information:
Journal Volume: 50; Journal Issue: 50; Journal ID: ISSN 1751-8113
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Mathematics; PT-symmetric superpotential; variational approximation; translational instability; Derrick’s theorem; collective coordinate

Citation Formats

Dawson, John F., Cooper, Fred, Khare, Avinash, Mihaila, Bogdan, Arévalo, Edward, Lan, Ruomeng, Comech, Andrew, and Saxena, Avadh. Stability of new exact solutions of the nonlinear Schrödinger equation in a Pöschl–Teller external potential. United States: N. p., 2017. Web. doi:10.1088/1751-8121/aa9006.
Dawson, John F., Cooper, Fred, Khare, Avinash, Mihaila, Bogdan, Arévalo, Edward, Lan, Ruomeng, Comech, Andrew, & Saxena, Avadh. Stability of new exact solutions of the nonlinear Schrödinger equation in a Pöschl–Teller external potential. United States. doi:10.1088/1751-8121/aa9006.
Dawson, John F., Cooper, Fred, Khare, Avinash, Mihaila, Bogdan, Arévalo, Edward, Lan, Ruomeng, Comech, Andrew, and Saxena, Avadh. Fri . "Stability of new exact solutions of the nonlinear Schrödinger equation in a Pöschl–Teller external potential". United States. doi:10.1088/1751-8121/aa9006. https://www.osti.gov/servlets/purl/1514934.
@article{osti_1514934,
title = {Stability of new exact solutions of the nonlinear Schrödinger equation in a Pöschl–Teller external potential},
author = {Dawson, John F. and Cooper, Fred and Khare, Avinash and Mihaila, Bogdan and Arévalo, Edward and Lan, Ruomeng and Comech, Andrew and Saxena, Avadh},
abstractNote = {Here, we discuss the stability properties of the solutions of the general nonlinear Schrödinger equation in 1 + 1 dimensions in an external potential derivable from a parity-time ($ \newcommand{\PT}{\mathcal{PT}} \PT$ ) symmetric superpotential $W(x)$ that we considered earlier in Kevrekidis et al (2015 Phys. Rev. E 92 042901). In particular we consider the nonlinear partial differential equation $ \{i \, \partial_t + \partial_x^2 - V(x) + g \vert \psi(x, t) \vert ^{2\kappa} \} \, \psi(x, t) = 0 \>, $ for arbitrary nonlinearity parameter κ, where $g= \pm1$ and V is the well known Pöschl–Teller potential which we allow to be repulsive as well as attractive. Using energy landscape methods, linear stability analysis as well as a time dependent variational approximation, we derive consistent analytic results for the domains of instability of these new exact solutions as a function of the strength of the external potential and κ. For the repulsive potential we show that there is a translational instability which can be understood in terms of the energy landscape as a function of a stretching parameter and a translation parameter being a saddle near the exact solution. In this case, numerical simulations show that if we start with the exact solution, the initial wave function breaks into two pieces traveling in opposite directions. If we explore the slightly perturbed solution situations, a 1% change in initial conditions can change significantly the details of how the wave function breaks into two separate pieces. For the attractive potential, changing the initial conditions by 1% modifies the domain of stability only slightly. For the case of the attractive potential and negative g perturbed solutions merely oscillate with the oscillation frequencies predicted by the variational approximation.},
doi = {10.1088/1751-8121/aa9006},
journal = {Journal of Physics. A, Mathematical and Theoretical},
number = 50,
volume = 50,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Interplay between parity-time symmetry, supersymmetry, and nonlinearity: An analytically tractable case example
journal, October 2015

  • Kevrekidis, Panayotis G.; Cuevas–Maraver, Jesús; Saxena, Avadh
  • Physical Review E, Vol. 92, Issue 4
  • DOI: 10.1103/PhysRevE.92.042901

Making sense of non-Hermitian Hamiltonians
journal, May 2007


The Physics of Non-Hermitian Operators
journal, July 2006

  • Geyer, Hendrik; Heiss, Dieter; Znojil, Miloslav
  • Journal of Physics A: Mathematical and General, Vol. 39, Issue 32
  • DOI: 10.1088/0305-4470/39/32/E01

$\mathcal{PT}$ -Symmetric Periodic Optical Potentials
journal, February 2011

  • Makris, K. G.; El-Ganainy, R.; Christodoulides, D. N.
  • International Journal of Theoretical Physics, Vol. 50, Issue 4
  • DOI: 10.1007/s10773-010-0625-6

Physical realization of -symmetric potential scattering in a planar slab waveguide
journal, February 2005

  • Ruschhaupt, A.; Delgado, F.; Muga, J. G.
  • Journal of Physics A: Mathematical and General, Vol. 38, Issue 9
  • DOI: 10.1088/0305-4470/38/9/L03

Beam Dynamics in P T Symmetric Optical Lattices
journal, March 2008


Visualization of Branch Points in P T -Symmetric Waveguides
journal, August 2008


Bloch Oscillations in Complex Crystals with P T Symmetry
journal, September 2009


Dynamic localization and transport in complex crystals
journal, December 2009


Spectral singularities and Bragg scattering in complex crystals
journal, February 2010


Observation of parity–time symmetry in optics
journal, January 2010

  • Rüter, Christian E.; Makris, Konstantinos G.; El-Ganainy, Ramy
  • Nature Physics, Vol. 6, Issue 3
  • DOI: 10.1038/nphys1515

Observation of P T -Symmetry Breaking in Complex Optical Potentials
journal, August 2009


Parity–time synthetic photonic lattices
journal, August 2012

  • Regensburger, Alois; Bersch, Christoph; Miri, Mohammad-Ali
  • Nature, Vol. 488, Issue 7410
  • DOI: 10.1038/nature11298

Experimental study of active LRC circuits with PT symmetries
journal, October 2011


$\mathcal{PT}$-symmetric electronics
journal, October 2012


Observation of PT phase transition in a simple mechanical system
journal, March 2013

  • Bender, Carl M.; Berntson, Bjorn K.; Parker, David
  • American Journal of Physics, Vol. 81, Issue 3
  • DOI: 10.1119/1.4789549

Parity–time-symmetric whispering-gallery microcavities
journal, April 2014

  • Peng, Bo; Özdemir, Şahin Kaya; Lei, Fuchuan
  • Nature Physics, Vol. 10, Issue 5
  • DOI: 10.1038/nphys2927

Supersymmetric Optical Structures
journal, June 2013


Supersymmetric mode converters
journal, April 2014

  • Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4698

Supersymmetry in quantum mechanics
journal, August 1985


Supersymmetry and quantum mechanics
journal, January 1995


A new PT -symmetric complex Hamiltonian with a real spectrum
journal, December 1999


Generating Complex Potentials with real Eigenvalues in Supersymmetric Quantum Mechanics
journal, June 2001

  • Bagchi, B.; Mallik, S.; Quesne, C.
  • International Journal of Modern Physics A, Vol. 16, Issue 16
  • DOI: 10.1142/S0217751X01004153

sl(2, ) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues
journal, September 2000


Supersymmetry-generated one-way-invisible PT -symmetric optical crystals
journal, March 2014


Bemerkungen zur Quantenmechanik des anharmonischen Oszillators
journal, March 1933

  • P�schl, G.; Teller, E.
  • Zeitschrift f�r Physik, Vol. 83, Issue 3-4
  • DOI: 10.1007/BF01331132

Gray solitons on the surface of water
journal, January 2014


Gaussian wave-packet dynamics: Semiquantal and semiclassical phase-space formalism
journal, November 1994


Note on Exchange Phenomena in the Thomas Atom
journal, July 1930

  • Dirac, P. A. M.
  • Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 26, Issue 3
  • DOI: 10.1017/S0305004100016108

Comments on Nonlinear Wave Equations as Models for Elementary Particles
journal, September 1964

  • Derrick, G. H.
  • Journal of Mathematical Physics, Vol. 5, Issue 9
  • DOI: 10.1063/1.1704233

Modulational Stability of Ground States of Nonlinear Schrödinger Equations
journal, May 1985

  • Weinstein, Michael I.
  • SIAM Journal on Mathematical Analysis, Vol. 16, Issue 3
  • DOI: 10.1137/0516034

Generalized traveling-wave method, variational approach, and modified conserved quantities for the perturbed nonlinear Schrödinger equation
journal, July 2010


Quantum dynamics in a time-dependent variational approximation
journal, December 1986


Universal Critical Power for Nonlinear Schrödinger Equations with a Symmetric Double Well Potential
journal, November 2009