Effect of surface protrusion on plasma sheath properties in atmospheric microdischarges
- Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
- Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
- Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering, and Dept. of Mathematics
- Tsinghua Univ., Beijing (China). Dept. of Electrical Engineering
The electric field enhancement due to the presence of cathode surface protrusion is investigated in atmospheric microdischarges with the goal of identifying the plasma sheath properties (such as cathode sheath thickness and electric field distortion). The electric field enhancement caused by surface protrusion is examined by adjusting the aspect ratio and the protrusion size. It is found that the cathode electric field enhancement depends strongly (weakly) on the aspect ratio (size) of the protrusion when it is much smaller than the discharge gap distance. In particular, the axial electric field in both vacuum and discharges becomes nonlinear with the protrusion on the cathode. The cathode sheath thicknesses obtained by two different methods are compared. With the same axial (or radial) protrusion dimension, increasing the aspect ratio will result in a significant decrease in the sheath thickness, whereas increasing the axial protrusion size with an unchanged aspect ratio will only lead to a slight decrease in the sheath thickness. The results contribute to predicting the relative plasma sheath properties from the geometrical parameter of the surface protrusion in atmospheric microdischarges.
- Research Organization:
- Univ. of Michigan, Ann Arbor, MI (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES); National Natural Science Foundation of China (NSFC)
- Grant/Contract Number:
- SC0001939; FA9550-14-1-0309; FA9550-18-1-0061
- OSTI ID:
- 1514893
- Alternate ID(s):
- OSTI ID: 1418411
- Journal Information:
- Physics of Plasmas, Vol. 25, Issue 1; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Direct current microplasma formation around microstructure arrays
Paschen's curve in microgaps with an electrode surface protrusion