DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification

Abstract

Magnetocaloric refrigeration is a solid-state cooling approach that assures high energy efficiency and low environmental impact. It remains uncompetitive with conventional vapor-compression technologies due to lack of high-performing materials that exhibit large magnetocaloric effects in low magnetic fields. In this work we report a game-changing enhancement of the magnetocaloric response in a transition-metal-based Ni–Co–Mn–Ti. Mechanically and chemically stable rapidly solidified ribbons exhibit magnetic entropy changes as high as ~27J·kg–1K–1 for a moderate field change of 2T, comparable to or larger than the best known materials for near-room temperature applications. The ribbons can be easily manufactured in large quantities and the transition temperature can be adjusted by varying Co concentration.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]
  1. Federal Univ. of Santa Catarina (UFSC), Florianopolis, SC (Brazil)
  2. Ames Lab., Ames, IA (United States)
  3. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office
OSTI Identifier:
1514881
Report Number(s):
IS-J-9934
Journal ID: ISSN 1359-6454
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 173; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; multicaloric; magnetocaloric; shape memory; magnetic refrigeration

Citation Formats

Neves Bez, Henrique, Pathak, Arjun K., Biswas, Anis, Zarkevich, Nikolai, Balema, Viktor, Mudryk, Yaroslav, Johnson, Duane D., and Pecharsky, Vitalij K. Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification. United States: N. p., 2019. Web. doi:10.1016/j.actamat.2019.05.004.
Neves Bez, Henrique, Pathak, Arjun K., Biswas, Anis, Zarkevich, Nikolai, Balema, Viktor, Mudryk, Yaroslav, Johnson, Duane D., & Pecharsky, Vitalij K. Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification. United States. https://doi.org/10.1016/j.actamat.2019.05.004
Neves Bez, Henrique, Pathak, Arjun K., Biswas, Anis, Zarkevich, Nikolai, Balema, Viktor, Mudryk, Yaroslav, Johnson, Duane D., and Pecharsky, Vitalij K. Fri . "Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification". United States. https://doi.org/10.1016/j.actamat.2019.05.004. https://www.osti.gov/servlets/purl/1514881.
@article{osti_1514881,
title = {Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification},
author = {Neves Bez, Henrique and Pathak, Arjun K. and Biswas, Anis and Zarkevich, Nikolai and Balema, Viktor and Mudryk, Yaroslav and Johnson, Duane D. and Pecharsky, Vitalij K.},
abstractNote = {Magnetocaloric refrigeration is a solid-state cooling approach that assures high energy efficiency and low environmental impact. It remains uncompetitive with conventional vapor-compression technologies due to lack of high-performing materials that exhibit large magnetocaloric effects in low magnetic fields. In this work we report a game-changing enhancement of the magnetocaloric response in a transition-metal-based Ni–Co–Mn–Ti. Mechanically and chemically stable rapidly solidified ribbons exhibit magnetic entropy changes as high as ~27J·kg–1K–1 for a moderate field change of 2T, comparable to or larger than the best known materials for near-room temperature applications. The ribbons can be easily manufactured in large quantities and the transition temperature can be adjusted by varying Co concentration.},
doi = {10.1016/j.actamat.2019.05.004},
journal = {Acta Materialia},
number = C,
volume = 173,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Caloric effects in ferroic materials
journal, April 2018

  • Fähler, Sebastian; Pecharsky, Vitalij K.
  • MRS Bulletin, Vol. 43, Issue 4
  • DOI: 10.1557/mrs.2018.66

Magnetic heat pumping near room temperature
journal, August 1976

  • Brown, G. V.
  • Journal of Applied Physics, Vol. 47, Issue 8
  • DOI: 10.1063/1.323176

Recent developments in magnetocaloric materials
journal, May 2005

  • Gschneidner, K. A.; Pecharsky, V. K.; Tsokol, A. O.
  • Reports on Progress in Physics, Vol. 68, Issue 6, p. 1479-1539
  • DOI: 10.1088/0034-4885/68/6/R04

Caloric materials near ferroic phase transitions
journal, April 2014

  • Moya, X.; Kar-Narayan, S.; Mathur, N. D.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3951

Materials Challenges for High Performance Magnetocaloric Refrigeration Devices
journal, September 2012

  • Smith, Anders; Bahl, Christian R. H.; Bjørk, Rasmus
  • Advanced Energy Materials, Vol. 2, Issue 11
  • DOI: 10.1002/aenm.201200167

Magnetocaloric effect: From materials research to refrigeration devices
journal, April 2018


Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides
journal, February 2006


Transition-metal-based magnetic refrigerants for room-temperature applications
journal, January 2002

  • Tegus, O.; Brück, E.; Buschow, K. H. J.
  • Nature, Vol. 415, Issue 6868
  • DOI: 10.1038/415150a

Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window
journal, March 2013

  • Liu, E. K.; Zhang, H. G.; Xu, G. Z.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798318

Effects of hydrostatic pressure on magnetostructural transitions and magnetocaloric properties in (MnNiSi)1−x(FeCoGe)x
journal, March 2015

  • Samanta, Tapas; Lepkowski, Daniel L.; Saleheen, Ahmad Us
  • Journal of Applied Physics, Vol. 117, Issue 12
  • DOI: 10.1063/1.4916339

Giant magnetocaloric effect of MnAs1−xSbx
journal, November 2001

  • Wada, H.; Tanabe, Y.
  • Applied Physics Letters, Vol. 79, Issue 20
  • DOI: 10.1063/1.1419048

Field Induced Structural Transformation in MnAs
journal, August 2003

  • Ishikawa, Fumihiro; Koyama, Keiichi; Watanabe, Kazuo
  • Japanese Journal of Applied Physics, Vol. 42, Issue Part 2, No. 8A
  • DOI: 10.1143/JJAP.42.L918

Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys
journal, May 2009


High-throughput search for caloric materials: the CaloriCool approach
journal, December 2017

  • Zarkevich, N. A.; Johnson, D. D.; Pecharsky, V. K.
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 2
  • DOI: 10.1088/1361-6463/aa9bd0

Realization of multifunctional shape-memory ferromagnets in all- d -metal Heusler phases
journal, July 2015

  • Wei, Z. Y.; Liu, E. K.; Chen, J. H.
  • Applied Physics Letters, Vol. 107, Issue 2
  • DOI: 10.1063/1.4927058

Magnetostructural martensitic transformations with large volume changes and magneto-strains in all- d -metal Heusler alloys
journal, August 2016

  • Wei, Z. Y.; Liu, E. K.; Li, Y.
  • Applied Physics Letters, Vol. 109, Issue 7
  • DOI: 10.1063/1.4961382

Contradictory role of the magnetic contribution in inverse magnetocaloric Heusler materials
journal, May 2016


A 3–350 K fast automatic small sample calorimeter
journal, November 1997

  • Pecharsky, V. K.; Moorman, J. O.; Gschneidner, K. A.
  • Review of Scientific Instruments, Vol. 68, Issue 11
  • DOI: 10.1063/1.1148367

Best practices in evaluation of the magnetocaloric effect from bulk magnetization measurements
journal, July 2018


X-ray powder diffractometer for in situ structural studies in magnetic fields from 0 to 35 kOe between 2.2 and 315 K
journal, April 2004

  • Holm, Aaron Patrick; Pecharsky, Vitalij K.; Gschneidner, Karl A.
  • Review of Scientific Instruments, Vol. 75, Issue 4
  • DOI: 10.1063/1.1667253

The antiferromagnetic structure of NiMn
journal, October 1959


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes
journal, January 2015

  • Zarkevich, Nikolai A.; Johnson, Duane D.
  • The Journal of Chemical Physics, Vol. 142, Issue 2
  • DOI: 10.1063/1.4905209

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Structure and stability of hcp bulk and nano-precipitated Ag2Al
journal, May 2002


Predicted hcp Ag-Al metastable phase diagram, equilibrium ground states, and precipitate structure
journal, February 2003


Design of high-strength refractory complex solid-solution alloys
journal, March 2018

  • Singh, Prashant; Sharma, Aayush; Smirnov, A. V.
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0072-0

Structural database for reducing cost in materials design and complexity of multiscale computations
journal, January 2006


FeRh ground state and martensitic transformation
journal, January 2018


Shape-Memory Transformations of NiTi: Minimum-Energy Pathways between Austenite, Martensites, and Kinetically Limited Intermediate States
journal, December 2014


The La(Fe,Mn,Si) 13 H z magnetic phase transition under pressure: The La(Fe,Mn,Si) 13 H z magnetic phase transition under pressure
journal, July 2017

  • Lovell, Edmund; Bez, Henrique N.; Boldrin, David C.
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 11, Issue 8
  • DOI: 10.1002/pssr.201700143

Mixed Magnetism for Refrigeration and Energy Conversion
journal, September 2011

  • Dung, Nguyen H.; Ou, Zhi Qiang; Caron, Luana
  • Advanced Energy Materials, Vol. 1, Issue 6
  • DOI: 10.1002/aenm.201100252

The magnetocaloric effect in Fe49Rh51 compound
journal, August 1990


Giant magnetocaloric effect driven by structural transitions
journal, May 2012

  • Liu, Jian; Gottschall, Tino; Skokov, Konstantin P.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3334

Magnetocaloric properties of Ni2Mn1−xCuxGa
journal, May 2006

  • Stadler, Shane; Khan, Mahmud; Mitchell, Joseph
  • Applied Physics Letters, Vol. 88, Issue 19
  • DOI: 10.1063/1.2202751

Giant magnetic refrigeration capacity near room temperature in Ni 40 Co 10 Mn 40 Sn 10 multifunctional alloy
journal, March 2014

  • Huang, L.; Cong, D. Y.; Suo, H. L.
  • Applied Physics Letters, Vol. 104, Issue 13
  • DOI: 10.1063/1.4870771

A detailed study of the hysteresis in La0.67Ca0.33MnO3
journal, October 2016

  • Bez, Henrique N.; Nielsen, Kaspar K.; Smith, Anders
  • Journal of Magnetism and Magnetic Materials, Vol. 416
  • DOI: 10.1016/j.jmmm.2016.05.011

DISORDER ENHANCED MAGNETIC MOMENT IN Fe 2 CrAl RIBBONS
journal, September 2008


Works referencing / citing this record:

Giant exchange bias effect in all-3 d -metal Ni 38.8 Co 2.9 Mn 37.9 Ti 20.4 thin film
journal, January 2020

  • Liu, K.; Ma, S. C.; Zhang, Z. S.
  • Applied Physics Letters, Vol. 116, Issue 2
  • DOI: 10.1063/1.5129878

Electronic behaviors during martensitic transformations in all- d -metal Heusler alloys
journal, July 2019

  • Zeng, Qingqi; Shen, Jianlei; Zhang, Hanning
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 42
  • DOI: 10.1088/1361-648x/ab2bd8