skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface

Abstract

To provide guidelines to accelerate the Haber–Bosch (HB) process for synthesis of ammonia from hydrogen and nitrogen, we used Quantum Mechanics (QM) to determine the reaction mechanism and free energy reaction barriers under experimental reaction conditions (400 °C and 20 atm) for all 10 important surface reactions on the Fe(211)R surface.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Department of Chemical and Materials Engineering, University of Nevada – Reno, USA
  2. Materials and Procs Simulation Center (MSC), California Institute of Technology, Pasadena, USA, CNR-ICCOM
  3. Materials and Procs Simulation Center (MSC), California Institute of Technology, Pasadena, USA
Publication Date:
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1514764
Grant/Contract Number:  
AC07-05ID14517
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print) Journal Volume: 21 Journal Issue: 21; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Fuller, Jon, Fortunelli, Alessandro, Goddard III, William A., and An, Qi. Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface. United Kingdom: N. p., 2019. Web. doi:10.1039/C9CP01611B.
Fuller, Jon, Fortunelli, Alessandro, Goddard III, William A., & An, Qi. Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface. United Kingdom. doi:10.1039/C9CP01611B.
Fuller, Jon, Fortunelli, Alessandro, Goddard III, William A., and An, Qi. Wed . "Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface". United Kingdom. doi:10.1039/C9CP01611B.
@article{osti_1514764,
title = {Reaction mechanism and kinetics for ammonia synthesis on the Fe(211) reconstructed surface},
author = {Fuller, Jon and Fortunelli, Alessandro and Goddard III, William A. and An, Qi},
abstractNote = {To provide guidelines to accelerate the Haber–Bosch (HB) process for synthesis of ammonia from hydrogen and nitrogen, we used Quantum Mechanics (QM) to determine the reaction mechanism and free energy reaction barriers under experimental reaction conditions (400 °C and 20 atm) for all 10 important surface reactions on the Fe(211)R surface.},
doi = {10.1039/C9CP01611B},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 21,
volume = 21,
place = {United Kingdom},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C9CP01611B

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

FTIR study of ammonia formation via the successive hydrogenation of N atoms trapped in a solid N2 matrix at low temperatures
journal, January 2011

  • Hidaka, Hiroshi; Watanabe, Motohiro; Kouchi, Akira
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 35
  • DOI: 10.1039/c1cp20645a

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Exploring the limits: A low-pressure, low-temperature Haber–Bosch process
journal, April 2014


Theory of NH x ± H Reactions on Fe{211}
journal, July 2009

  • McKay, Hayley L.; Jenkins, Stephen J.; Wales, David J.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 34
  • DOI: 10.1021/jp9034248

Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


A note on two problems in connexion with graphs
journal, December 1959


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ammonia synthesis over iron single-crystal catalysts: the effects of alumina and potassium
journal, September 1986

  • Bare, Simon R.; Strongin, D. R.; Somorjai, G. A.
  • The Journal of Physical Chemistry, Vol. 90, Issue 20
  • DOI: 10.1021/j100411a003

Chemisorption of Organics on Platinum. 2. Chemisorption of C 2 H x and CH x on Pt(111)
journal, November 1998

  • Kua, Jeremy; Goddard, William A.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 47
  • DOI: 10.1021/jp982527s

Thermochemistry for Hydrocarbon Intermediates Chemisorbed on Metal Surfaces: CH n - m (CH 3 ) m with n = 1, 2, 3 and mn on Pt, Ir, Os, Pd, Rh, and Ru
journal, March 2000

  • Kua, Jeremy; Faglioni, Francesco; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 122, Issue 10
  • DOI: 10.1021/ja993336l

Primary steps in catalytic synthesis of ammonia
journal, April 1983

  • Ertl, G.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 1, Issue 2
  • DOI: 10.1116/1.572299

QM-Mechanism-Based Hierarchical High-Throughput in Silico Screening Catalyst Design for Ammonia Synthesis
journal, November 2018

  • An, Qi; Shen, Yidi; Fortunelli, Alessandro
  • Journal of the American Chemical Society, Vol. 140, Issue 50
  • DOI: 10.1021/jacs.8b10499

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru):  Application to Direct Methanol Fuel Cells
journal, December 1999

  • Kua, Jeremy; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 121, Issue 47
  • DOI: 10.1021/ja9844074

Hydrogen Adsorption Structures and Energetics on Iron Surfaces at High Coverage
journal, February 2014

  • Wang, Tao; Wang, Shengguang; Luo, Qiquan
  • The Journal of Physical Chemistry C, Vol. 118, Issue 8
  • DOI: 10.1021/jp410635z

First-principles study of the relaxation and energy of bcc-Fe, fcc-Fe and AISI-304 stainless steel surfaces
journal, August 2009


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Hydrogen on Fe(211): commensurate and reconstructed phases
journal, September 1990


Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure
journal, August 2001


A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
journal, May 2006

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 124, Issue 17
  • DOI: 10.1063/1.2190220

Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon
journal, April 2005


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Catalytic Synthesis of Ammonia—A “Never-Ending Story”?
journal, May 2003


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Hydrogen induced missing row reconstruction of Fe(211)
journal, March 1995


Surface energies of elemental crystals
journal, September 2016

  • Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran
  • Scientific Data, Vol. 3, Issue 1
  • DOI: 10.1038/sdata.2016.80

The surface properties of iron catalyst for ammonia synthesis
journal, January 2004


Hydrogen-induced missing-row reconstructions of Pd(110) studied by scanning tunneling microscopy
journal, July 1996


Chemisorption of Organics on Platinum. 1. The Interstitial Electron Model
journal, November 1998

  • Kua, Jeremy; Goddard, William A.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 47
  • DOI: 10.1021/jp9825260

A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
journal, December 1976


Frequency factors and isotope effects in solid state rate processes
journal, January 1957


Calculation of the surface energy of bcc metals by using the modified embedded-atom method
journal, January 2003

  • Zhang, Jian-Min; Ma, Fei; Xu, Ke-Wei
  • Surface and Interface Analysis, Vol. 35, Issue 8
  • DOI: 10.1002/sia.1587

Insight into why the Langmuir–Hinshelwood mechanism is generally preferred
journal, March 2002

  • Baxter, R. J.; Hu, P.
  • The Journal of Chemical Physics, Vol. 116, Issue 11
  • DOI: 10.1063/1.1458938

Reaction Mechanism and Kinetics for Ammonia Synthesis on the Fe(111) Surface
journal, April 2018

  • Qian, Jin; An, Qi; Fortunelli, Alessandro
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.7b13409

Surface structures in ammonia synthesis
journal, September 1994

  • Somorjai, G. A.; Materer, N.
  • Topics in Catalysis, Vol. 1, Issue 3-4
  • DOI: 10.1007/BF01492277

Nucleation and growth of a H-induced reconstruction of Ni(110)
journal, December 1991


Coverage-Dependent N 2 Adsorption and Its Modification of Iron Surfaces Structures
journal, January 2016

  • Wang, Tao; Tian, Xinxin; Yang, Yong
  • The Journal of Physical Chemistry C, Vol. 120, Issue 5
  • DOI: 10.1021/acs.jpcc.5b11953

N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex
journal, November 2011