DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?

Abstract

The Fixed Anvil Temperature (FAT) hypothesis proposes that upper tropospheric cloud fraction peaks at a special isotherm that is independent of surface temperature. It has been argued that a FAT should result from simple ingredients: Clausius-Clapeyron, longwave emission from water vapor, and tropospheric energy and mass balance. Here the first cloud-resolving simulations of radiative-convective equilibrium designed to contain only these basic ingredients are presented. This setup does not produce a FAT: the anvil temperature varies by about 40% of the surface temperature range. However, the tropopause temperature varies by only 4% of the surface temperature range, which supports the existence of a Fixed Tropopause Temperature (FiTT). Lastly, in full-complexity radiative-convective equilibrium simulations, the spread in anvil temperature is smaller by about a factor of 2, but the tropopause temperature remains more invariant than the anvil temperature by an order of magnitude. In other words, our simulations have a FiTT, not a FAT.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Univ. of California, Berkeley, CA (United States)
  2. Princeton Univ., NJ (United States)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1513799
Grant/Contract Number:  
AC02-05CH11231; DGE1106400; 1535746
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 46; Journal Issue: 3; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Seeley, Jacob T., Jeevanjee, Nadir, and Romps, David M. FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?. United States: N. p., 2019. Web. doi:10.1029/2018gl080096.
Seeley, Jacob T., Jeevanjee, Nadir, & Romps, David M. FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?. United States. https://doi.org/10.1029/2018gl080096
Seeley, Jacob T., Jeevanjee, Nadir, and Romps, David M. Mon . "FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?". United States. https://doi.org/10.1029/2018gl080096. https://www.osti.gov/servlets/purl/1513799.
@article{osti_1513799,
title = {FAT or FiTT: Are Anvil Clouds or the Tropopause Temperature Invariant?},
author = {Seeley, Jacob T. and Jeevanjee, Nadir and Romps, David M.},
abstractNote = {The Fixed Anvil Temperature (FAT) hypothesis proposes that upper tropospheric cloud fraction peaks at a special isotherm that is independent of surface temperature. It has been argued that a FAT should result from simple ingredients: Clausius-Clapeyron, longwave emission from water vapor, and tropospheric energy and mass balance. Here the first cloud-resolving simulations of radiative-convective equilibrium designed to contain only these basic ingredients are presented. This setup does not produce a FAT: the anvil temperature varies by about 40% of the surface temperature range. However, the tropopause temperature varies by only 4% of the surface temperature range, which supports the existence of a Fixed Tropopause Temperature (FiTT). Lastly, in full-complexity radiative-convective equilibrium simulations, the spread in anvil temperature is smaller by about a factor of 2, but the tropopause temperature remains more invariant than the anvil temperature by an order of magnitude. In other words, our simulations have a FiTT, not a FAT.},
doi = {10.1029/2018gl080096},
journal = {Geophysical Research Letters},
number = 3,
volume = 46,
place = {United States},
year = {Mon Feb 11 00:00:00 EST 2019},
month = {Mon Feb 11 00:00:00 EST 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration
journal, May 2001

  • Hartmann, Dennis L.; Holton, James R.; Fu, Qiang
  • Geophysical Research Letters, Vol. 28, Issue 10
  • DOI: 10.1029/2000GL012833

Testing the Role of Radiation in Determining Tropical Cloud-Top Temperature
journal, September 2012


Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model
journal, October 1984


Atmospheric radiative transfer modeling: a summary of the AER codes
journal, March 2005

  • Clough, S. A.; Shephard, M. W.; Mlawer, E. J.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 91, Issue 2
  • DOI: 10.1016/j.jqsrt.2004.05.058

Mean precipitation change from a deepening troposphere
journal, October 2018

  • Jeevanjee, Nadir; Romps, David M.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 45
  • DOI: 10.1073/pnas.1720683115

Radiative–convective equilibrium model intercomparison project
journal, January 2018

  • Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki
  • Geoscientific Model Development, Vol. 11, Issue 2
  • DOI: 10.5194/gmd-11-793-2018

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models
journal, January 2008

  • Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2008JD009944

Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model
journal, May 2007

  • Kuang, Zhiming; Hartmann, Dennis L.
  • Journal of Climate, Vol. 20, Issue 10
  • DOI: 10.1175/JCLI4124.1

The Dry-Entropy Budget of a Moist Atmosphere
journal, December 2008


Test of the Fixed Anvil Temperature Hypothesis
journal, July 2012

  • Li, Yue; Yang, Ping; North, Gerald R.
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 7
  • DOI: 10.1175/JAS-D-11-0158.1

Tropical tropopause layer
journal, January 2009

  • Fueglistaler, S.; Dessler, A. E.; Dunkerton, T. J.
  • Reviews of Geophysics, Vol. 47, Issue 1
  • DOI: 10.1029/2008RG000267

Bulk Parameterization of the Snow Field in a Cloud Model
journal, June 1983


The Reference Forward Model (RFM)
journal, January 2017


An important constraint on tropical cloud - climate feedback: TROPICAL CLOUD-CLIMATE FEEDBACK
journal, October 2002

  • Hartmann, Dennis L.; Larson, Kristin
  • Geophysical Research Letters, Vol. 29, Issue 20
  • DOI: 10.1029/2002GL015835

Nature versus Nurture in Shallow Convection
journal, May 2010

  • Romps, David M.; Kuang, Zhiming
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 5
  • DOI: 10.1175/2009JAS3307.1

Thermal Equilibrium of the Atmosphere with a Convective Adjustment
journal, July 1964


The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: TEMPERATURE SENSITIVITY OF HIGH CLOUDS
journal, December 2011

  • Zelinka, Mark D.; Hartmann, Dennis L.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D23
  • DOI: 10.1029/2011JD016459

Why is longwave cloud feedback positive?
journal, January 2010

  • Zelinka, Mark D.; Hartmann, Dennis L.
  • Journal of Geophysical Research, Vol. 115, Issue D16
  • DOI: 10.1029/2010JD013817

Clouds and Aerosols
book, June 2014


Thermodynamic constraint on the depth of the global tropospheric circulation
journal, July 2017

  • Thompson, David W. J.; Bony, Sandrine; Li, Ying
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 31
  • DOI: 10.1073/pnas.1620493114

Improvements of an Ice-Phase Microphysics Parameterization for Use in Numerical Simulations of Tropical Convection
journal, January 1995


Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets
journal, May 1973


Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor
journal, January 1992

  • Clough, Shepard A.; Iacono, Michael J.; Moncet, Jean-Luc
  • Journal of Geophysical Research, Vol. 97, Issue D14
  • DOI: 10.1029/92JD01419

Rotating radiative-convective equilibrium simulated by a cloud-resolving model: ROTATING RCE
journal, December 2013

  • Khairoutdinov, Marat; Emanuel, Kerry
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 4
  • DOI: 10.1002/2013MS000253

The Gap between Simulation and Understanding in Climate Modeling
journal, November 2005


Cloud and Radiative Characteristics of Tropical Deep Convective Systems in Extended Cloud Objects from CERES Observations
journal, November 2009

  • Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng
  • Journal of Climate, Vol. 22, Issue 22
  • DOI: 10.1175/2009JCLI3038.1

Do Undiluted Convective Plumes Exist in the Upper Tropical Troposphere?
journal, February 2010

  • Romps, David M.; Kuang, Zhiming
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 2
  • DOI: 10.1175/2009JAS3184.1

Increases in moist-convective updraught velocities with warming in radiative-convective equilibrium: Increases in Updraught Velocities with Warming
journal, June 2015

  • Singh, Martin S.; O'Gorman, Paul A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 141, Issue 692
  • DOI: 10.1002/qj.2567

A very simple model for the water vapour feedback on climate change
journal, January 2010

  • Ingram, William
  • Quarterly Journal of the Royal Meteorological Society, Vol. 136, Issue 646
  • DOI: 10.1002/qj.546

Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and Observations
journal, March 2004


A perspective on climate model hierarchies: MODEL HIERARCHIES
journal, August 2017

  • Jeevanjee, Nadir; Hassanzadeh, Pedram; Hill, Spencer
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 4
  • DOI: 10.1002/2017MS001038

Radiative and Convective Driving of Tropical High Clouds
journal, November 2007

  • Kubar, Terence L.; Hartmann, Dennis L.; Wood, Robert
  • Journal of Climate, Vol. 20, Issue 22
  • DOI: 10.1175/2007JCLI1628.1

Works referencing / citing this record:

Convection and Climate: What Have We Learned from Simple Models and Simplified Settings?
journal, June 2019

  • Hartmann, Dennis L.; Blossey, Peter N.; Dygert, Brittany D.
  • Current Climate Change Reports, Vol. 5, Issue 3
  • DOI: 10.1007/s40641-019-00136-9

Climatology Explains Intermodel Spread in Tropical Upper Tropospheric Cloud and Relative Humidity Response to Greenhouse Warming
journal, November 2019

  • Po‐Chedley, Stephen; Zelinka, Mark D.; Jeevanjee, Nadir
  • Geophysical Research Letters, Vol. 46, Issue 22
  • DOI: 10.1029/2019gl084786

The Response of Tropical Organized Convection to El Niño Warming
journal, August 2019

  • Sullivan, Sylvia C.; Schiro, Kathleen A.; Stubenrauch, Claudia
  • Journal of Geophysical Research: Atmospheres
  • DOI: 10.1029/2019jd031026