DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes

Abstract

Single-ion-conducting polymers are ideal electrolytes for rechargeable lithium batteries as they eliminate salt concentration gradients and concomitant concentration overpotentials during battery cycling. Here in this paper, we study the ionic conductivity and morphology of poly(ethylene oxide)-b-poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PEO-b-PSLiTFSI) block copolymers with no added salt using ac impedance spectroscopy and small-angle X-ray scattering. The PEO molecular weight was held fixed at 5.0 kg mol-1, and that of PSLiTFSI was varied from 2.0 to 7.5 kg mol-1. The lithium ion concentration and block copolymer composition are intimately coupled in this system. At low temperatures, copolymers with PSLiTFSI block molecular weights ≤4.0 kg mol-1 exhibited microphase separation with crystalline PEO-rich microphases and lithium ions trapped in the form of ionic clusters in the glassy PSLiTFSI-rich microphases. At temperatures above the melting temperature of the PEO microphase, the lithium ions were released from the clusters, and a homogeneous disordered morphology was obtained. The ionic conductivity increased abruptly by several orders of magnitude at this transition. Block copolymers with PSLiTFSI block molecular weights ≥5.4 kg mol-1 were disordered at all temperatures, and the ionic conductivity was a smooth function of temperature. The transference numbers of these copolymers varied from 0.87 to 0.99. The relationship between ionmore » transport and molecular structure in single-ion-conducting block copolymer electrolytes is qualitatively different from the well-studied case of block copolymers with added salt.« less

Authors:
 [1];  [2];  [3];  [1];  [2];  [4];  [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Malvern Instruments Inc., Westborough, MA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1513786
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 48; Journal Issue: 18; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Rojas, Adriana A., Inceoglu, Sebnem, Mackay, Nikolaus G., Thelen, Jacob L., Devaux, Didier, Stone, Gregory M., and Balsara, Nitash P. Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes. United States: N. p., 2015. Web. doi:10.1021/acs.macromol.5b01193.
Rojas, Adriana A., Inceoglu, Sebnem, Mackay, Nikolaus G., Thelen, Jacob L., Devaux, Didier, Stone, Gregory M., & Balsara, Nitash P. Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes. United States. https://doi.org/10.1021/acs.macromol.5b01193
Rojas, Adriana A., Inceoglu, Sebnem, Mackay, Nikolaus G., Thelen, Jacob L., Devaux, Didier, Stone, Gregory M., and Balsara, Nitash P. Fri . "Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes". United States. https://doi.org/10.1021/acs.macromol.5b01193. https://www.osti.gov/servlets/purl/1513786.
@article{osti_1513786,
title = {Effect of Lithium-Ion Concentration on Morphology and Ion Transport in Single-Ion-Conducting Block Copolymer Electrolytes},
author = {Rojas, Adriana A. and Inceoglu, Sebnem and Mackay, Nikolaus G. and Thelen, Jacob L. and Devaux, Didier and Stone, Gregory M. and Balsara, Nitash P.},
abstractNote = {Single-ion-conducting polymers are ideal electrolytes for rechargeable lithium batteries as they eliminate salt concentration gradients and concomitant concentration overpotentials during battery cycling. Here in this paper, we study the ionic conductivity and morphology of poly(ethylene oxide)-b-poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PEO-b-PSLiTFSI) block copolymers with no added salt using ac impedance spectroscopy and small-angle X-ray scattering. The PEO molecular weight was held fixed at 5.0 kg mol-1, and that of PSLiTFSI was varied from 2.0 to 7.5 kg mol-1. The lithium ion concentration and block copolymer composition are intimately coupled in this system. At low temperatures, copolymers with PSLiTFSI block molecular weights ≤4.0 kg mol-1 exhibited microphase separation with crystalline PEO-rich microphases and lithium ions trapped in the form of ionic clusters in the glassy PSLiTFSI-rich microphases. At temperatures above the melting temperature of the PEO microphase, the lithium ions were released from the clusters, and a homogeneous disordered morphology was obtained. The ionic conductivity increased abruptly by several orders of magnitude at this transition. Block copolymers with PSLiTFSI block molecular weights ≥5.4 kg mol-1 were disordered at all temperatures, and the ionic conductivity was a smooth function of temperature. The transference numbers of these copolymers varied from 0.87 to 0.99. The relationship between ion transport and molecular structure in single-ion-conducting block copolymer electrolytes is qualitatively different from the well-studied case of block copolymers with added salt.},
doi = {10.1021/acs.macromol.5b01193},
journal = {Macromolecules},
number = 18,
volume = 48,
place = {United States},
year = {Fri Sep 04 00:00:00 EDT 2015},
month = {Fri Sep 04 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 81 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
journal, June 2007

  • Singh, Mohit; Odusanya, Omolola; Wilmes, Gregg M.
  • Macromolecules, Vol. 40, Issue 13
  • DOI: 10.1021/ma0629541

Block copolymer electrolytes for rechargeable lithium batteries
journal, November 2013

  • Young, Wen-Shiue; Kuan, Wei-Fan; Epps, Thomas H.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 52, Issue 1
  • DOI: 10.1002/polb.23404

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Synthesis, Morphology, and Ion Conduction of Polyphosphazene Ammonium Iodide Ionomers
journal, December 2014

  • Bartels, Joshua; Hess, Andrew; Shiau, Huai-Suen
  • Macromolecules, Vol. 48, Issue 1
  • DOI: 10.1021/ma501634b

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes
journal, March 2009

  • Gomez, Enrique D.; Panday, Ashoutosh; Feng, Edward H.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900091n

Block Copolymer Thermodynamics: Theory and Experiment
journal, October 1990


Electrostatic control of block copolymer morphology
journal, June 2014

  • Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4001

Discontinuous Changes in Ionic Conductivity of a Block Copolymer Electrolyte through an Order–Disorder Transition
journal, January 2012

  • Teran, Alexander A.; Mullin, Scott A.; Hallinan, Daniel T.
  • ACS Macro Letters, Vol. 1, Issue 2
  • DOI: 10.1021/mz200183t

How Does Nanoscale Crystalline Structure Affect Ion Transport in Solid Polymer Electrolytes?
journal, June 2014

  • Cheng, Shan; Smith, Derrick M.; Li, Christopher Y.
  • Macromolecules, Vol. 47, Issue 12
  • DOI: 10.1021/ma500734q

Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries
journal, October 2014


Effect of Counter Ion Placement on Conductivity in Single-Ion Conducting Block Copolymer Electrolytes
journal, January 2005

  • Ryu, Sang-Woog; Trapa, Patrick E.; Olugebefola, Solar C.
  • Journal of The Electrochemical Society, Vol. 152, Issue 1
  • DOI: 10.1149/1.1828244

Dielectric and Viscoelastic Responses of Imidazolium-Based Ionomers with Different Counterions and Side Chain Lengths
journal, January 2014

  • Choi, U. Hyeok; Ye, Yuesheng; Salas de la Cruz, David
  • Macromolecules, Vol. 47, Issue 2
  • DOI: 10.1021/ma402263y

Controlled ionic conductivity via tapered block polymer electrolytes
journal, January 2015

  • Kuan, Wei-Fan; Remy, Roddel; Mackay, Michael E.
  • RSC Advances, Vol. 5, Issue 17
  • DOI: 10.1039/C4RA15953E

Morphology–Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries
journal, May 2014

  • Inceoglu, Sebnem; Rojas, Adriana A.; Devaux, Didier
  • ACS Macro Letters, Vol. 3, Issue 6
  • DOI: 10.1021/mz5001948

Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions
journal, August 2009

  • Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.
  • Macromolecules, Vol. 42, Issue 15
  • DOI: 10.1021/ma900401a

Steady state current flow in solid binary electrolyte cells
journal, June 1987

  • Bruce, Peter G.; Vincent, Colin A.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 225, Issue 1-2
  • DOI: 10.1016/0022-0728(87)80001-3

Analysis of Transference Number Measurements Based on the Potentiostatic Polarization of Solid Polymer Electrolytes
journal, January 1995

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 142, Issue 10
  • DOI: 10.1149/1.2050005

A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator
journal, October 2010


Nika : software for two-dimensional data reduction
journal, March 2012


Multi-Length Scale Morphology of Poly(ethylene oxide)-Based Sulfonate Ionomers with Alkali Cations at Room Temperature
journal, May 2010

  • Wang, Wenqin; Liu, Wenjuan; Tudryn, Gregory J.
  • Macromolecules, Vol. 43, Issue 9
  • DOI: 10.1021/ma100379j

Modes of Crystallization in Block Copolymer Microdomains:  Breakout, Templated, and Confined
journal, March 2002

  • Loo, Yueh-Lin; Register, Richard A.; Ryan, Anthony J.
  • Macromolecules, Vol. 35, Issue 6
  • DOI: 10.1021/ma011824j

Morphology of semicrystalline block copolymers of ethylene-(ethylene-alt-propylene)
journal, August 1993

  • Rangarajan, Pratima; Register, Richard A.; Fetters, Lewis J.
  • Macromolecules, Vol. 26, Issue 17
  • DOI: 10.1021/ma00069a034

Design of Cluster-free Polymer Electrolyte Membranes and Implications on Proton Conductivity
journal, September 2012

  • Beers, Keith M.; Balsara, Nitash P.
  • ACS Macro Letters, Vol. 1, Issue 10
  • DOI: 10.1021/mz300389f

Microstructure of ionomers: interpretation of small-angle x-ray scattering data
journal, December 1983

  • Yarusso, David J.; Cooper, Stuart L.
  • Macromolecules, Vol. 16, Issue 12
  • DOI: 10.1021/ma00246a013

Ion transport and clustering in nafion perfluorinated membranes
journal, February 1983


MDI-based polyurethane ionomers. 1. New small-angle x-ray scattering model
journal, April 1988

  • Lee, Daychyuan; Register, Richard A.; Yang, Changzheng
  • Macromolecules, Vol. 21, Issue 4
  • DOI: 10.1021/ma00182a026

Structure of Liquid PEO-LiTFSI Electrolyte
journal, June 2000


Microphase separation of charged diblock copolymers: melts and solutions
journal, September 1992


Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

The importance of the lithium ion transference number in lithium/polymer cells
journal, September 1994


Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number
journal, January 2010

  • Ghosh, Ayan; Wang, Chunsheng; Kofinas, Peter
  • Journal of The Electrochemical Society, Vol. 157, Issue 7, p. A846-A849
  • DOI: 10.1149/1.3428710

Composite Polymer Electrolytes
journal, July 1991

  • Capuano, F.; Croce, F.; Scrosati, B.
  • Journal of The Electrochemical Society, Vol. 138, Issue 7
  • DOI: 10.1149/1.2085900

PEO-Based Electrolyte Membranes Based on LiBC[sub 4]O[sub 8] Salt
journal, January 2004

  • Appetecchi, G. B.; Zane, D.; Scrosati, B.
  • Journal of The Electrochemical Society, Vol. 151, Issue 9
  • DOI: 10.1149/1.1774488

Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Comparison of lithium-polymer cell performance with unity and nonunity transference numbers
journal, August 2000


Works referencing / citing this record:

Poly(ethylene oxide)-based block copolymer electrolytes for lithium metal batteries: PEO-based BCEs for LMBs
journal, August 2018

  • Phan, Trang NT; Issa, Sébastien; Gigmes, Didier
  • Polymer International, Vol. 68, Issue 1
  • DOI: 10.1002/pi.5677

Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries
journal, January 2018

  • Nguyen, Huu-Dat; Kim, Guk-Tae; Shi, Junli
  • Energy & Environmental Science, Vol. 11, Issue 11
  • DOI: 10.1039/c8ee02093k

Ion Transport in Solvent-Free, Crosslinked, Single-Ion Conducting Polymer Electrolytes for Post-Lithium Ion Batteries
journal, June 2018


Influence of pore morphology on the diffusion of water in triblock copolymer membranes
journal, January 2020

  • Aryal, Dipak; Howard, Michael P.; Samanta, Rituparna
  • The Journal of Chemical Physics, Vol. 152, Issue 1
  • DOI: 10.1063/1.5128119

Stabilizing polymer electrolytes in high-voltage lithium batteries
journal, July 2019


Confinement-entitled morphology and ion transport in ion-containing polymers
journal, January 2019

  • Park, Moon Jeong
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00117k

Electrochemical performances of a new solid composite polymer electrolyte based on hyperbranched star polymer and ionic liquid for lithium-ion batteries
journal, April 2017


Single-ion conducting gel polymer electrolytes: design, preparation and application
journal, January 2020

  • Deng, Kuirong; Zeng, Qingguang; Wang, Da
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta11178f

Gel Polymer Electrolytes for Electrochemical Energy Storage
journal, November 2017

  • Cheng, Xunliang; Pan, Jian; Zhao, Yang
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702184

Ionic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates
journal, January 2019

  • Arges, Christopher G.; Li, Ke; Zhang, Le
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/c8me00081f

Designing solid-state electrolytes for safe, energy-dense batteries
journal, February 2020


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/c6cs00491a

Enabling High Lithium Conductivity in Polymerized Ionic Liquid Block Copolymer Electrolytes
journal, December 2018


Block copolymers for supercapacitors, dielectric capacitors and batteries
journal, March 2019


Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes
journal, January 2018

  • Sharon, Daniel; Bennington, Peter; Liu, Claire
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0291816jes

Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks
journal, April 2018


Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteries
journal, March 2020

  • Sutton, Preston; Airoldi, Martino; Porcarelli, Luca
  • Polymers, Vol. 12, Issue 3
  • DOI: 10.3390/polym12030595