Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage
Abstract
The sluggish kinetic in electrode materials is one of the critical challenges in achieving high-power sodium ion storage. We report a coaxial core-shell nanostructure composed of carbon nanotube (CNT) as the core and TiO2@MoO2@C as shells for a hierarchically nanoarchitectured anode for improved electrode kinetics. The 1D tubular nanostructure can effectively reduce ion diffusion path, increase electrical conductivity, accommodate the stress due to volume change upon cycling, and provide additional interfacial active sites for enhanced charge storage and transport properties. Significantly, a synergistic effect between TiO2 and MoO2 nanostructures is investigated through ex-situ solid state nuclear magnetic resonance. Furthermore, the electrode exhibits a good rate capability (150 mAh g–1 at 20 A g–1) and superior cycling stability with a reversibly capacity of 175 mAh g–1 at 10 A g–1 for over 8000 cycles.
- Authors:
-
- Shanghai Jiao Tong Univ., Shanghai (China); Boise State Univ., Boise, ID (United States)
- Florida State Univ., Tallahassee, FL (United States)
- Boise State Univ., Boise, ID (United States)
- Argonne National Lab. (ANL), Lemont, IL (United States)
- Shanghai Jiao Tong Univ., Shanghai (China)
- Shanghai Jiao Tong Univ., Shanghai (China); Zhejiang Natrium Energy Inc., Shaoxing (China)
- Publication Date:
- Research Org.:
- Argonne National Lab. (ANL), Argonne, IL (United States)
- Sponsoring Org.:
- National Basic Research Program of China; National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); USDOE
- OSTI Identifier:
- 1513760
- Grant/Contract Number:
- AC02-06CH11357
- Resource Type:
- Accepted Manuscript
- Journal Name:
- ACS Nano
- Additional Journal Information:
- Journal Volume: 13; Journal Issue: 1; Journal ID: ISSN 1936-0851
- Publisher:
- American Chemical Society (ACS)
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 25 ENERGY STORAGE; anode; hierarchical nanoarchitecture; high rate; long cycle life; sodium ion storage
Citation Formats
Ma, Chunrong, Li, Xiang, Deng, Changjian, Hu, Yan -Yan, Lee, Sungsik, Liao, Xiao -Zhen, He, Yu -Shi, Ma, Zi -Feng, and Xiong, Hui. Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage. United States: N. p., 2018.
Web. doi:10.1021/acsnano.8b07811.
Ma, Chunrong, Li, Xiang, Deng, Changjian, Hu, Yan -Yan, Lee, Sungsik, Liao, Xiao -Zhen, He, Yu -Shi, Ma, Zi -Feng, & Xiong, Hui. Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage. United States. https://doi.org/10.1021/acsnano.8b07811
Ma, Chunrong, Li, Xiang, Deng, Changjian, Hu, Yan -Yan, Lee, Sungsik, Liao, Xiao -Zhen, He, Yu -Shi, Ma, Zi -Feng, and Xiong, Hui. Fri .
"Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage". United States. https://doi.org/10.1021/acsnano.8b07811. https://www.osti.gov/servlets/purl/1513760.
@article{osti_1513760,
title = {Coaxial Carbon Nanotube Supported TiO2@MoO2@Carbon Core–Shell Anode for Ultrafast and High-Capacity Sodium Ion Storage},
author = {Ma, Chunrong and Li, Xiang and Deng, Changjian and Hu, Yan -Yan and Lee, Sungsik and Liao, Xiao -Zhen and He, Yu -Shi and Ma, Zi -Feng and Xiong, Hui},
abstractNote = {The sluggish kinetic in electrode materials is one of the critical challenges in achieving high-power sodium ion storage. We report a coaxial core-shell nanostructure composed of carbon nanotube (CNT) as the core and TiO2@MoO2@C as shells for a hierarchically nanoarchitectured anode for improved electrode kinetics. The 1D tubular nanostructure can effectively reduce ion diffusion path, increase electrical conductivity, accommodate the stress due to volume change upon cycling, and provide additional interfacial active sites for enhanced charge storage and transport properties. Significantly, a synergistic effect between TiO2 and MoO2 nanostructures is investigated through ex-situ solid state nuclear magnetic resonance. Furthermore, the electrode exhibits a good rate capability (150 mAh g–1 at 20 A g–1) and superior cycling stability with a reversibly capacity of 175 mAh g–1 at 10 A g–1 for over 8000 cycles.},
doi = {10.1021/acsnano.8b07811},
journal = {ACS Nano},
number = 1,
volume = 13,
place = {United States},
year = {2018},
month = {12}
}
Web of Science
Works referenced in this record:
New energy storage devices for post lithium-ion batteries
journal, January 2013
- Zhou, Haoshen
- Energy & Environmental Science, Vol. 6, Issue 8
Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries
journal, January 2013
- Lee, Sang-Young; Choi, Keun-Ho; Choi, Woo-Sung
- Energy & Environmental Science, Vol. 6, Issue 8
Hierarchical Structures Based on Two-Dimensional Nanomaterials for Rechargeable Lithium Batteries
journal, January 2017
- Cong, Lina; Xie, Haiming; Li, Jinghong
- Advanced Energy Materials, Vol. 7, Issue 12
Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016
- Sun, Yongming; Liu, Nian; Cui, Yi
- Nature Energy, Vol. 1, Issue 7
Nanomaterials for Lithium-ion Rechargeable Batteries
journal, January 2006
- Liu, Hua Kun; Wang, Guo Xiu; Guo, Zaiping
- Journal of Nanoscience and Nanotechnology, Vol. 6, Issue 1
Energy storage through intercalation reactions: electrodes for rechargeable batteries
journal, December 2016
- Massé, Robert C.; Liu, Chaofeng; Li, Yanwei
- National Science Review, Vol. 4, Issue 1
Electrochemical energy storage to power the 21st century
journal, July 2011
- Rolison, Debra R.; Nazar, Linda F.
- MRS Bulletin, Vol. 36, Issue 7
Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage
journal, August 2014
- Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.
- Nature Communications, Vol. 5, Issue 1
The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015
- Kundu, Dipan; Talaie, Elahe; Duffort, Victor
- Angewandte Chemie International Edition, Vol. 54, Issue 11
High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries
journal, April 2015
- Zhao, Yubao; Manthiram, Arumugam
- Chemistry of Materials, Vol. 27, Issue 8
Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries
journal, April 2015
- Xie, Xiuqiang; Kretschmer, Katja; Zhang, Jinqiang
- Nano Energy, Vol. 13
A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries
journal, January 2017
- Liu, Shuai; Feng, Jinkui; Bian, Xiufang
- Energy & Environmental Science, Vol. 10, Issue 5
Correction: A new, cheap, and productive FeP anode material for sodium-ion batteries
journal, January 2015
- Li, Wei-Jie; Chou, Shu-Lei; Wang, Jia-Zhao
- Chemical Communications, Vol. 51, Issue 22
Superior Stable Self-Healing SnP 3 Anode for Sodium-Ion Batteries
journal, June 2015
- Fan, Xiulin; Mao, Jianfeng; Zhu, Yujie
- Advanced Energy Materials, Vol. 5, Issue 18
A General Strategy to Fabricate Carbon-Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High-Performance Lithium and Sodium Ion Batteries
journal, September 2015
- Zhu, Changbao; Kopold, Peter; Li, Weihan
- Advanced Science, Vol. 2, Issue 12
MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes
journal, January 2014
- David, Lamuel; Bhandavat, Romil; Singh, Gurpreet
- ACS Nano, Vol. 8, Issue 2
New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
journal, August 2015
- Bommier, Clement; Surta, Todd Wesley; Dolgos, Michelle
- Nano Letters, Vol. 15, Issue 9
Long cycle life microporous spherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol
journal, January 2016
- Zhou, Dehua; Peer, Maryam; Yang, Zhenzhen
- Journal of Materials Chemistry A, Vol. 4, Issue 17
The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls
journal, December 2004
- Sun, D.; Kwon, C. W.; Baure, G.
- Advanced Functional Materials, Vol. 14, Issue 12
Disordered 3 D Multi-layer Graphene Anode Material from CO 2 for Sodium-Ion Batteries
journal, April 2016
- Smith, Kassiopeia; Parrish, Riley; Wei, Wei
- ChemSusChem, Vol. 9, Issue 12
Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011
- Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
- The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
Pipe-Wire TiO 2 –Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries
journal, May 2017
- Mao, Minglei; Yan, Feilong; Cui, Chunyu
- Nano Letters, Vol. 17, Issue 6
Excellent sodium storage performance of carbon-coated TiO2: Assisted with electrostatic interaction of surfactants
journal, September 2017
- Li, Yunwei; Chen, Chengcheng; Wang, Mengying
- Journal of Power Sources, Vol. 361
Facile synthesis of carbon-mediated porous nanocrystallite anatase TiO 2 for improved sodium insertion capabilities as an anode for sodium-ion batteries
journal, September 2017
- Wu, Feng; Luo, Rui; Xie, Man
- Journal of Power Sources, Vol. 362
Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO 2 as High-Performance Anode in Sodium Ion Batteries
journal, January 2018
- Ling, Liming; Bai, Ying; Wang, Zhaohua
- ACS Applied Materials & Interfaces, Vol. 10, Issue 6
Electrochemical Performances of MoO2/C Nanocomposite for Sodium Ion Storage: An Insight into Rate Dependent Charge/Discharge Mechanism
journal, June 2017
- Jiang, Jiaxiang; Yang, Wanli; Wang, Hao
- Electrochimica Acta, Vol. 240
Ultrafine MoO 2 -Carbon Microstructures Enable Ultralong-Life Power-Type Sodium Ion Storage by Enhanced Pseudocapacitance
journal, April 2017
- Zhao, Changtai; Yu, Chang; Zhang, Mengdi
- Advanced Energy Materials, Vol. 7, Issue 15
T-Nb 2 O 5 /C Nanofibers Prepared through Electrospinning with Prolonged Cycle Durability for High-Rate Sodium-Ion Batteries Induced by Pseudocapacitance
journal, October 2017
- Yang, Leping; Zhu, Yuan-En; Sheng, Jian
- Small, Vol. 13, Issue 46
Self-Assembled Nb 2 O 5 Nanosheets for High Energy–High Power Sodium Ion Capacitors
journal, August 2016
- Li, Hongsen; Zhu, Yue; Dong, Shengyang
- Chemistry of Materials, Vol. 28, Issue 16
Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material
journal, September 2015
- Kim, Haegyeom; Lim, Eunho; Jo, Changshin
- Nano Energy, Vol. 16
Ultrafine Nb 2 O 5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery
journal, August 2016
- Yan, Litao; Chen, Gen; Sarker, Swagotom
- ACS Applied Materials & Interfaces, Vol. 8, Issue 34
Partially Single-Crystalline Mesoporous Nb 2 O 5 Nanosheets in between Graphene for Ultrafast Sodium Storage
journal, June 2016
- Wang, Liu; Bi, Xiaofang; Yang, Shubin
- Advanced Materials, Vol. 28, Issue 35
Na 2 Ti 3 O 7 : Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries
journal, September 2011
- Senguttuvan, Premkumar; Rousse, Gwenaëlle; Seznec, Vincent
- Chemistry of Materials, Vol. 23, Issue 18
Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
journal, December 2015
- Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
- Advanced Energy Materials, Vol. 6, Issue 4
Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
journal, April 2015
- Chen, Chaoji; Wen, Yanwei; Hu, Xianluo
- Nature Communications, Vol. 6, Issue 1
Pseudocapacitive oxide materials for high-rate electrochemical energy storage
journal, January 2014
- Augustyn, Veronica; Simon, Patrice; Dunn, Bruce
- Energy & Environmental Science, Vol. 7, Issue 5
High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013
- Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
- Nature Materials, Vol. 12, Issue 6
Hydrothermal Synthesis and Pseudocapacitance Properties of MnO 2 Nanostructures
journal, November 2005
- Subramanian, V.; Zhu, Hongwei; Vajtai, Robert
- The Journal of Physical Chemistry B, Vol. 109, Issue 43
MoS 2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries
journal, September 2014
- Hu, Zhe; Wang, Lixiu; Zhang, Kai
- Angewandte Chemie International Edition, Vol. 53, Issue 47
Graphene foam supported V2O5/N-C core/shell arrays as advanced cathode for lithium ion storage
journal, February 2018
- Chen, Minghua; Liang, Xinqi; Yin, Jinghua
- Journal of Alloys and Compounds, Vol. 735
Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries
journal, August 2017
- Huang, Zhaodong; Hou, Hongshuai; Wang, Chao
- Chemistry of Materials, Vol. 29, Issue 17
Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage
journal, May 2017
- Sun, Ruimin; Wei, Qiulong; Sheng, Jinzhi
- Nano Energy, Vol. 35
Intercalation Pseudocapacitance in Ultrathin VOPO 4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage
journal, December 2015
- Zhu, Yue; Peng, Lele; Chen, Dahong
- Nano Letters, Vol. 16, Issue 1
Ever-Increasing Pseudocapacitance in RGO-MnO-RGO Sandwich Nanostructures for Ultrahigh-Rate Lithium Storage
journal, February 2016
- Yuan, Tianzhi; Jiang, Yinzhu; Sun, Wenping
- Advanced Functional Materials, Vol. 26, Issue 13
Ultrahigh Rate and Long-Life Sodium-Ion Batteries Enabled by Engineered Surface and Near-Surface Reactions
journal, January 2018
- Zhao, Changtai; Yu, Chang; Qiu, Bo
- Advanced Materials, Vol. 30, Issue 7
Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
journal, June 2016
- Chao, Dongliang; Zhu, Changrong; Yang, Peihua
- Nature Communications, Vol. 7, Issue 1
Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007
- Wang, John; Polleux, Julien; Lim, James
- The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
Carbon coated SnO 2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries
journal, January 2016
- Ma, Chunrong; Zhang, Weimin; He, Yu-Shi
- Nanoscale, Vol. 8, Issue 7
Mo 2 C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution
journal, November 2016
- Huang, Yang; Gong, Qiufang; Song, Xuening
- ACS Nano, Vol. 10, Issue 12
Pomegranate-like N,P-Doped Mo 2 C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution
journal, September 2016
- Chen, Yu-Yun; Zhang, Yun; Jiang, Wen-Jie
- ACS Nano, Vol. 10, Issue 9
Molybdenum x-ray absorption edge spectra. The chemical state of molybdenum in nitrogenase
journal, March 1976
- Cramer, S. P.; Eccles, T. K.; Kutzler, F. W.
- Journal of the American Chemical Society, Vol. 98, Issue 5
Size-Tunable Olive-Like Anatase TiO 2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries
journal, August 2016
- Chen, Jun; Zhang, Yan; Zou, Guoqiang
- Small, Vol. 12, Issue 40
Biphase-Interface Enhanced Sodium Storage and Accelerated Charge Transfer: Flower-Like Anatase/Bronze TiO 2 /C as an Advanced Anode Material for Na-Ion Batteries
journal, December 2017
- Chu, Chenxiao; Yang, Jing; Zhang, Qianqian
- ACS Applied Materials & Interfaces, Vol. 9, Issue 50
Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO 2 –Graphene Nanocomposite Enables High-Performance Sodium-Ion Capacitors
journal, February 2017
- Le, Zaiyuan; Liu, Fang; Nie, Ping
- ACS Nano, Vol. 11, Issue 3
Hierarchical Porous Nanosheets Constructed by Graphene-Coated, Interconnected TiO 2 Nanoparticles for Ultrafast Sodium Storage
journal, January 2018
- Li, Baosong; Xi, Baojuan; Feng, Zhenyu
- Advanced Materials, Vol. 30, Issue 10
Oxygen Vacancies Evoked Blue TiO 2 (B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors
journal, May 2017
- Zhang, Yan; Ding, Zhiying; Foster, Christopher W.
- Advanced Functional Materials, Vol. 27, Issue 27
Nitrogen Doped/Carbon Tuning Yolk-Like TiO 2 and Its Remarkable Impact on Sodium Storage Performances
journal, November 2016
- Zhang, Yan; Wang, Chiwei; Hou, Hongshuai
- Advanced Energy Materials, Vol. 7, Issue 4
Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries
journal, January 1995
- Takami, Norio
- Journal of The Electrochemical Society, Vol. 142, Issue 2
Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films
journal, January 1980
- Ho, C.
- Journal of The Electrochemical Society, Vol. 127, Issue 2
Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors
journal, May 2018
- Zhao, Xu; Wang, Hong-En; Yang, Ying
- Energy Storage Materials, Vol. 12
The role and utilization of pseudocapacitance for energy storage by supercapacitors
journal, May 1997
- Conway, B. E.; Birss, V.; Wojtowicz, J.
- Journal of Power Sources, Vol. 66, Issue 1-2
Li + Ion Insertion in TiO 2 (Anatase). 2. Voltammetry on Nanoporous Films
journal, September 1997
- Lindström, Henrik; Södergren, Sven; Solbrand, Anita
- The Journal of Physical Chemistry B, Vol. 101, Issue 39
Works referencing / citing this record:
Controlled Design of Well‐Dispersed Ultrathin MoS 2 Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious “Houses” for K Ions
journal, January 2020
- Cui, Yongpeng; Liu, Wei; Feng, Wenting
- Advanced Functional Materials, Vol. 30, Issue 10
Recent Progress of Electrochemical Energy Devices: Metal Oxide–Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy
journal, July 2019
- Seok, Dohyeong; Jeong, Yohan; Han, Kyoungho
- Sustainability, Vol. 11, Issue 13
A layered Bi 2 Te 3 nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage
journal, January 2019
- Sun, Dianding; Zhang, Guanjun; Li, Dan
- Sustainable Energy & Fuels, Vol. 3, Issue 11