skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 15, 2020

Title: The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction

Abstract

The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. With this work, we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon–carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We discovered a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2];  [2];  [3];  [4];  [1];  [1];  [5]; ORCiD logo [2]; ORCiD logo [6];  [7];  [8]; ORCiD logo [7];  [7];  [7]; ORCiD logo [8];  [4]; ORCiD logo [8];  [7] more »; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [9] « less
  1. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
  2. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Stanford Univ., CA (United States)
  3. Univ. of York (United Kingdom); Univ. of Nebraska, Lincoln, NE (United States)
  4. Univ. of Nebraska, Lincoln, NE (United States)
  5. SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Universität Potsdam, Potsdam (Germany)
  6. Univ. of Edinburgh, Scotland (United Kingdom)
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  8. Brown Univ., Providence, RI (United States)
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1513333
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemistry
Additional Journal Information:
Journal Name: Nature Chemistry; Journal ID: ISSN 1755-4330
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Wolf, Thomas J. A., Sanchez, D. M., Yang, J., Parrish, R. M., Nunes, J. P. F., Centurion, M., Coffee, R., Cryan, J. P., Gühr, M., Hegazy, K., Kirrander, A., Li, R. K., Ruddock, J., Shen, X., Vecchione, T., Weathersby, S. P., Weber, P. M., Wilkin, K., Yong, H., Zheng, Q., Wang, X. J., Minitti, M. P., and Martínez, Todd J. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. United States: N. p., 2019. Web. doi:10.1038/s41557-019-0252-7.
Wolf, Thomas J. A., Sanchez, D. M., Yang, J., Parrish, R. M., Nunes, J. P. F., Centurion, M., Coffee, R., Cryan, J. P., Gühr, M., Hegazy, K., Kirrander, A., Li, R. K., Ruddock, J., Shen, X., Vecchione, T., Weathersby, S. P., Weber, P. M., Wilkin, K., Yong, H., Zheng, Q., Wang, X. J., Minitti, M. P., & Martínez, Todd J. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. United States. doi:10.1038/s41557-019-0252-7.
Wolf, Thomas J. A., Sanchez, D. M., Yang, J., Parrish, R. M., Nunes, J. P. F., Centurion, M., Coffee, R., Cryan, J. P., Gühr, M., Hegazy, K., Kirrander, A., Li, R. K., Ruddock, J., Shen, X., Vecchione, T., Weathersby, S. P., Weber, P. M., Wilkin, K., Yong, H., Zheng, Q., Wang, X. J., Minitti, M. P., and Martínez, Todd J. Mon . "The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction". United States. doi:10.1038/s41557-019-0252-7.
@article{osti_1513333,
title = {The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction},
author = {Wolf, Thomas J. A. and Sanchez, D. M. and Yang, J. and Parrish, R. M. and Nunes, J. P. F. and Centurion, M. and Coffee, R. and Cryan, J. P. and Gühr, M. and Hegazy, K. and Kirrander, A. and Li, R. K. and Ruddock, J. and Shen, X. and Vecchione, T. and Weathersby, S. P. and Weber, P. M. and Wilkin, K. and Yong, H. and Zheng, Q. and Wang, X. J. and Minitti, M. P. and Martínez, Todd J.},
abstractNote = {The ultrafast photoinduced ring-opening of 1,3-cyclohexadiene constitutes a textbook example of electrocyclic reactions in organic chemistry and a model for photobiological reactions in vitamin D synthesis. Although the relaxation from the photoexcited electronic state during the ring-opening has been investigated in numerous studies, the accompanying changes in atomic distance have not been resolved. With this work, we present a direct and unambiguous observation of the ring-opening reaction path on the femtosecond timescale and subångström length scale using megaelectronvolt ultrafast electron diffraction. We followed the carbon–carbon bond dissociation and the structural opening of the 1,3-cyclohexadiene ring by the direct measurement of time-dependent changes in the distribution of interatomic distances. We discovered a substantial acceleration of the ring-opening motion after internal conversion to the ground state due to a steepening of the electronic potential gradient towards the product minima. The ring-opening motion transforms into rotation of the terminal ethylene groups in the photoproduct 1,3,5-hexatriene on the subpicosecond timescale.},
doi = {10.1038/s41557-019-0252-7},
journal = {Nature Chemistry},
number = ,
volume = ,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 15, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

GPU-Accelerated State-Averaged Complete Active Space Self-Consistent Field Interfaced with Ab Initio Multiple Spawning Unravels the Photodynamics of Provitamin D 3
journal, June 2016

  • Snyder, James W.; Curchod, Basile F. E.; Martínez, Todd J.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 13
  • DOI: 10.1021/acs.jpclett.6b00970

Quantum dynamics of photoexcited cyclohexadiene introducing reactive coordinates
journal, March 2000

  • Hofmann, Angelika; de Vivie-Riedle, Regina
  • The Journal of Chemical Physics, Vol. 112, Issue 11
  • DOI: 10.1063/1.481059

Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocyclic Chemical Reaction
journal, June 2015


Development of Experimental and Theoretical Crystal Lattice Organic Photochemistry:  The Quantitative Cavity. Mechanistic and Exploratory Organic Photochemistry 1
journal, February 2002

  • Zimmerman, Howard E.; Nesterov, Evgueni E.
  • Accounts of Chemical Research, Vol. 35, Issue 2
  • DOI: 10.1021/ar000210g

Solvent Dependent Conformational Relaxation of cis -1,3,5-Hexatriene
journal, August 2006

  • Harris, D. Ahmasi; Orozco, Michael B.; Sension, Roseanne J.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 30
  • DOI: 10.1021/jp061415v

Ultrafast Diffraction Imaging of the Electrocyclic Ring-Opening Reaction of 1,3-Cyclohexadiene
journal, May 2001

  • Dudek, Ray C.; Weber, Peter M.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 17
  • DOI: 10.1021/jp010122t

Femtosecond Infrared Spectroscopy of Bacteriorhodopsin Chromophore Isomerization
journal, August 2002


Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics
journal, May 2017


Imaging CF 3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction
journal, July 2018


An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units
journal, June 2015

  • Hohenstein, Edward G.; Luehr, Nathan; Ufimtsev, Ivan S.
  • The Journal of Chemical Physics, Vol. 142, Issue 22
  • DOI: 10.1063/1.4921956

The Ultrafast Pathway of Photon-Induced Electrocyclic Ring-Opening Reactions: The Case of 1,3-Cyclohexadiene
journal, May 2011


Remarks on the specificities of the photochemical and thermal transformations in the vitamin D field
journal, January 1961


The Conservation of Orbital Symmetry
journal, November 1969

  • Woodward, R. B.; Hoffmann, Roald
  • Angewandte Chemie International Edition in English, Vol. 8, Issue 11
  • DOI: 10.1002/anie.196907811

Ultrafast diffraction and structural dynamics: The nature of complex molecules far from equilibrium
journal, June 2001

  • Ruan, C. -Y.; Lobastov, V. A.; Srinivasan, R.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 13
  • DOI: 10.1073/pnas.131192898

α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF To Closely Approximate MS-CASPT2 Potential Energy Surfaces
journal, May 2017

  • Snyder, James W.; Parrish, Robert M.; Martínez, Todd J.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 11
  • DOI: 10.1021/acs.jpclett.7b00940

Centering of ultrafast time-resolved pump–probe electron diffraction patterns
journal, April 2004


Ab Initio Multiple Spawning:  Photochemistry from First Principles Quantum Molecular Dynamics
journal, June 2000

  • Ben-Nun, M.; Quenneville, Jason; Martínez, Todd J.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 22
  • DOI: 10.1021/jp994174i

Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation
journal, January 2008

  • Ufimtsev, Ivan S.; Martínez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 2
  • DOI: 10.1021/ct700268q

Photochemistry in a box. Photochemical reactions of molecules entrapped in crystal lattices: mechanistic and exploratory organic photochemistry
journal, September 1989

  • Zimmerman, Howard E.; Zuraw, Michael J.
  • Journal of the American Chemical Society, Vol. 111, Issue 20
  • DOI: 10.1021/ja00202a044

Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction
journal, May 2017


From the (1B) Spectroscopic State to the Photochemical Product of the Ultrafast Ring-Opening of 1,3-Cyclohexadiene: A Spectral Observation of the Complete Reaction Path
journal, August 2015

  • Pemberton, Christine C.; Zhang, Yao; Saita, Kenichiro
  • The Journal of Physical Chemistry A, Vol. 119, Issue 33
  • DOI: 10.1021/acs.jpca.5b05672

Mapping molecular motions leading to charge delocalization with ultrabright electrons
journal, April 2013

  • Gao, Meng; Lu, Cheng; Jean-Ruel, Hubert
  • Nature, Vol. 496, Issue 7445
  • DOI: 10.1038/nature12044

Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
journal, August 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 10
  • DOI: 10.1021/ct9003004

Density-functional approximation for the correlation energy of the inhomogeneous electron gas
journal, June 1986


The ultrafast photochemical ring-opening reaction of 1,3-cyclohexadiene in cyclohexane
journal, January 1998

  • Pullen, Stuart H.; Anderson, Neil A.; Walker, Larry A.
  • The Journal of Chemical Physics, Vol. 108, Issue 2
  • DOI: 10.1063/1.476366

X-Ray Diffraction from Isolated and Strongly Aligned Gas-Phase Molecules with a Free-Electron Laser
journal, February 2014


Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
journal, July 2015

  • Weathersby, S. P.; Brown, G.; Centurion, M.
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926994

Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives
journal, January 2014

  • Arruda, Brenden C.; Sension, Roseanne J.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54767a

Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction
journal, April 2017

  • Attar, Andrew R.; Bhattacherjee, Aditi; Pemmaraju, C. D.
  • Science, Vol. 356, Issue 6333
  • DOI: 10.1126/science.aaj2198

Direct Observation of Ground-State Product Formation in a 1,3-Cyclohexadiene Ring-Opening Reaction
journal, January 2015

  • Adachi, Shunsuke; Sato, Motoki; Suzuki, Toshinori
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 3
  • DOI: 10.1021/jz502487r

What Happens during the Picosecond Lifetime of 2A1 Cyclohexa-1,3-diene? A CAS-SCF Study of the Cyclohexadiene/Hexatriene Photochemical Interconversion
journal, November 1994

  • Celani, Paolo; Ottani, Stefano; Olivucci, Massimo
  • Journal of the American Chemical Society, Vol. 116, Issue 22
  • DOI: 10.1021/ja00101a037

A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units
journal, May 2017

  • Snyder, James W.; Fales, B. Scott; Hohenstein, Edward G.
  • The Journal of Chemical Physics, Vol. 146, Issue 17
  • DOI: 10.1063/1.4979844

Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses
journal, April 2016

  • Yang, Jie; Guehr, Markus; Vecchione, Theodore
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11232

Diarylethenes for Memories and Switches
journal, May 2000


Direct Imaging of Transient Molecular Structures with Ultrafast Diffraction
journal, January 2001


Spectroscopy and femtosecond dynamics of the ring opening reaction of 1,3-cyclohexadiene
journal, October 2006

  • Kuthirummal, Narayanan; Rudakov, Fedor M.; Evans, Conor L.
  • The Journal of Chemical Physics, Vol. 125, Issue 13
  • DOI: 10.1063/1.2345203

Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation
journal, March 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 4
  • DOI: 10.1021/ct800526s

Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
journal, June 2017


Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules
journal, October 2016


Closed-loop learning control of isomerization using shaped ultrafast laser pulses in the deep ultraviolet
journal, April 2009

  • Kotur, Marija; Weinacht, Thomas; Pearson, Brett J.
  • The Journal of Chemical Physics, Vol. 130, Issue 13
  • DOI: 10.1063/1.3103486

Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry
journal, April 2007

  • Frutos, L. M.; Andruniow, T.; Santoro, F.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 19
  • DOI: 10.1073/pnas.0701732104

Cyclohexadiene ring opening observed with 13 fs resolution: coherent oscillations confirm the reaction path
journal, January 2009

  • Kosma, K.; Trushin, S. A.; Fuß, W.
  • Phys. Chem. Chem. Phys., Vol. 11, Issue 1
  • DOI: 10.1039/B814201G

Photochemical Reactions as Key Steps in Natural Product Synthesis
journal, January 2011

  • Bach, Thorsten; Hehn, Jörg P.
  • Angewandte Chemie International Edition, Vol. 50, Issue 5
  • DOI: 10.1002/anie.201002845

Ring-Closing Reaction in Diarylethene Captured by Femtosecond Electron Crystallography
journal, September 2013

  • Jean-Ruel, Hubert; Gao, Meng; Kochman, Michal A.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 49
  • DOI: 10.1021/jp409245h

Ultrafast Electron Diffraction (UED): A New Development for the 4D Determination of Transient Molecular Structures
journal, June 2003

  • Srinivasan, Ramesh; Lobastov, Vladimir A.; Ruan, Chong-Yu
  • Helvetica Chimica Acta, Vol. 86, Issue 6
  • DOI: 10.1002/hlca.200390147

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527