DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data

Abstract

© 2019. The American Astronomical Society. All rights reserved. We present a measurement of the cosmic microwave background lensing potential using 500 deg2 of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater than unity at lensing multipoles L ≲ 250, using a quadratic estimator on a combination of cosmic microwave background temperature and polarization maps. We report measurements of the lensing potential power spectrum in the multipole range of 100 < L < 2000 from sets of temperature-only (T), polarization-only (POL), and minimum-variance (MV) estimators. We measure the lensing amplitude by taking the ratio of the measured spectrum to the expected spectrum from the best-fit Λ cold dark matter model to the Planck 2015 TT + low P + lensing data set. For the minimum-variance estimator, we find =0.944 0.025 (Sys.) SRC=restricting to only polarization data, we find POL=0.906\pm 0.090 0.040. Considering statistical uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1σ) and is more precise than our temperature-only constraint. We perform null tests and consistency checks and find no evidence for significant contamination.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [5]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9];  [7];  [10];  [11];  [12]; ORCiD logo [1];  [13]; ORCiD logo [14];  [15]; ORCiD logo [16];  [17] more »;  [18];  [19];  [20];  [21];  [9];  [22];  [6];  [7];  [5]; ORCiD logo [23];  [6];  [1];  [24];  [6];  [5];  [25];  [26];  [16];  [27];  [1]; ORCiD logo [28];  [29];  [30];  [6];  [17];  [31];  [14];  [5];  [21];  [32]; ORCiD logo [33];  [15];  [9];  [34]; ORCiD logo [9];  [35]; ORCiD logo [36];  [22];  [37];  [1]; ORCiD logo [21];  [38];  [39];  [33];  [3];  [40];  [41]; ORCiD logo [31];  [42]; ORCiD logo [43];  [42] « less
  1. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics
  2. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Dept. of Astronomy and Astrophysics; Univ. of Oslo (Norway). Inst. of Theoretical Astrophysics
  3. Cardiff Univ. (United Kingdom)
  4. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  5. NIST Quantum Devices Group, Boulder, CO (United States)
  6. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  7. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  8. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Dept. of Astronomy and Astrophysics; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  9. Univ. of Melbourne, Parkville (Australia). School of Physics
  10. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, Dept. of Astronomy and Astrophysics, Dept. of Physics, and Enrico Fermi Inst.; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  11. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Dept. of Astronomy and Astrophysics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  12. McGill Univ., Montreal, QC (Canada). Dept. of Physics; Univ. of KwaZulu-Natal, Durban (South Africa). School of Mathematics, Statistics & Computer Science
  13. California Inst. of Technology (CalTech), Pasadena, CA (United States). Theoretical AstroPhysics Including Relativity and Cosmology (TAPIR), Walter Burke Inst. for Theoretical Physics
  14. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Dept. of Astronomy and Astrophysics
  15. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Dept. of Astronomy and Astrophysics; California Inst. of Technology (CalTech), Pasadena, CA (United States)
  16. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division
  17. McGill Univ., Montreal, QC (Canada). Dept. of Physics; Canadian Inst. for Advanced Research (CIFAR), Toronto, ON (Canada). Program in Cosmology and Gravity
  18. Univ. of Colorado, Boulder, CO (United States). Dept. of Astrophysical and Planetary Sciences
  19. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Harvey Mudd College, Claremont, CA (United States)
  20. Univ. of California, Berkeley, CA (United States). Dept. of Physics; European Southern Observatory, Garching bei München (Germany)
  21. McGill Univ., Montreal, QC (Canada). Dept. of Physics
  22. Univ. of Colorado, Boulder, CO (United States). Dept. of Astrophysical and Planetary Sciences, and Dept. of Physics
  23. Canadian Inst. for Advanced Research (CIFAR), Toronto, ON (Canada). Program in Cosmology and Gravity; Univ. of Illinois at Urbana-Champaign, IL (United States). Astronomy Dept.
  24. Univ. of Chicago, IL (United States)
  25. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Dept. of Physics
  26. Univ. of California, Davis, CA (United States). Dept. of Physics
  27. NIST Quantum Devices Group, Boulder, CO (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  28. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Inst. d'Astrophysique, Paris (France)
  29. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics
  30. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, Dept. of Astronomy and Astrophysics, Dept. of Physics, and Enrico Fermi Inst.
  31. Univ. of Illinois at Urbana-Champaign, IL (United States). Astronomy Dept.
  32. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  33. Stanford Univ., CA (United States). Dept. of Physics, and Kavli Inst. for Particle Astrophysics and Cosmology
  34. Univ. of Minnesota, Minneapolis, MN (United States). School of Physics and Astronomy
  35. Case Western Reserve Univ., Cleveland, OH (United States). Physics Dept., Center for Education and Research in Cosmology and Astrophysics
  36. Univ. of KwaZulu-Natal, Durban (South Africa). School of Mathematics, Statistics & Computer Science; Yale Univ., New Haven, CT (United States). Dept. of Physics
  37. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics, and Enrico Fermi Inst.; School of the Art Inst., Chicago, IL (United States). Liberal Arts Dept.
  38. McGill Univ., Montreal, QC (Canada). Dept. of Physics; Three-Speed Logic, Inc., Vancouver, BC (Canada)
  39. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  40. Univ. of Toronto, ON (Canada). Dunlap Inst. for Astronomy & Astrophysics, and Dept. of Astronomy & Astrophysics
  41. Univ. of Maryland, College Park, MD (United States). Dept. of Astronomy
  42. Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  43. Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Illinois at Urbana-Champaign, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Science Foundation (NSF); Science and Technologies Facilities Council (STFC-UK); Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Institute for Advanced Research (CIFAR); Kavli Foundation; Gordon and Betty Moore Foundation; Australian Research Council (ARC)
Contributing Org.:
Gordon and Betty Moore Foundation; Australian Research Council
OSTI Identifier:
1513283
Alternate Identifier(s):
OSTI ID: 1595189; OSTI ID: 1603354; OSTI ID: 1634022; OSTI ID: 1737580
Report Number(s):
FERMILAB-PUB-19-225-AE; arXiv:1905.05777
Journal ID: ISSN 1538-4357; oai:inspirehep.net:1735176
Grant/Contract Number:  
AC02-07CH11359; AC02-06CH11357; AC-02-05CH11231; SC0015640; AC02-76SF00515; PLR-1248097; PHY- 0114422; GBMF No. 947; PHY-1125897; AST-1402161; AST-0956135; AST-1716965; CSSI-1835865; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 884; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: cosmic background radiation; gravitational lensing; large-scale structure; smic background radiation: temperature | gravitation: lens | cosmic background radiation: polarization | power spectrum | multipole | cosmological model | statistical analysis | data analysis method | numerical calculations | satellite: Planck; large-scale structure of the universe

Citation Formats

Wu, W. L. K., Mocanu, L. M., Ade, P. A. R., Anderson, A. J., Austermann, J. E., Avva, J. S., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W., Gallicchio, J., George, E. M., Gilbert, A., Gupta, N., Halverson, N. W., Harrington, N., Henning, J. W., Hilton, G. C., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Knox, L., Lee, A. T., Li, D., Lowitz, A., Manzotti, A., McMahon, J. J., Meyer, S. S., Millea, M., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Omori, Y., Padin, S., Patil, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Schaffer, K. K., Sievers, C., Simard, G., Smecher, G., Stark, A. A., Story, K. T., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Whitehorn, N., and Yefremenko, V. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data. United States: N. p., 2019. Web. doi:10.3847/1538-4357/ab4186.
Wu, W. L. K., Mocanu, L. M., Ade, P. A. R., Anderson, A. J., Austermann, J. E., Avva, J. S., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W., Gallicchio, J., George, E. M., Gilbert, A., Gupta, N., Halverson, N. W., Harrington, N., Henning, J. W., Hilton, G. C., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Knox, L., Lee, A. T., Li, D., Lowitz, A., Manzotti, A., McMahon, J. J., Meyer, S. S., Millea, M., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Omori, Y., Padin, S., Patil, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Schaffer, K. K., Sievers, C., Simard, G., Smecher, G., Stark, A. A., Story, K. T., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Whitehorn, N., & Yefremenko, V. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data. United States. https://doi.org/10.3847/1538-4357/ab4186
Wu, W. L. K., Mocanu, L. M., Ade, P. A. R., Anderson, A. J., Austermann, J. E., Avva, J. S., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W., Gallicchio, J., George, E. M., Gilbert, A., Gupta, N., Halverson, N. W., Harrington, N., Henning, J. W., Hilton, G. C., Holder, G. P., Holzapfel, W. L., Hou, Z., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Knox, L., Lee, A. T., Li, D., Lowitz, A., Manzotti, A., McMahon, J. J., Meyer, S. S., Millea, M., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Omori, Y., Padin, S., Patil, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Sayre, J. T., Schaffer, K. K., Sievers, C., Simard, G., Smecher, G., Stark, A. A., Story, K. T., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Whitehorn, N., and Yefremenko, V. Mon . "A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data". United States. https://doi.org/10.3847/1538-4357/ab4186. https://www.osti.gov/servlets/purl/1513283.
@article{osti_1513283,
title = {A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data},
author = {Wu, W. L. K. and Mocanu, L. M. and Ade, P. A. R. and Anderson, A. J. and Austermann, J. E. and Avva, J. S. and Beall, J. A. and Bender, A. N. and Benson, B. A. and Bianchini, F. and Bleem, L. E. and Carlstrom, J. E. and Chang, C. L. and Chiang, H. C. and Citron, R. and Moran, C. Corbett and Crawford, T. M. and Crites, A. T. and Haan, T. de and Dobbs, M. A. and Everett, W. and Gallicchio, J. and George, E. M. and Gilbert, A. and Gupta, N. and Halverson, N. W. and Harrington, N. and Henning, J. W. and Hilton, G. C. and Holder, G. P. and Holzapfel, W. L. and Hou, Z. and Hrubes, J. D. and Huang, N. and Hubmayr, J. and Irwin, K. D. and Knox, L. and Lee, A. T. and Li, D. and Lowitz, A. and Manzotti, A. and McMahon, J. J. and Meyer, S. S. and Millea, M. and Montgomery, J. and Nadolski, A. and Natoli, T. and Nibarger, J. P. and Noble, G. I. and Novosad, V. and Omori, Y. and Padin, S. and Patil, S. and Pryke, C. and Reichardt, C. L. and Ruhl, J. E. and Saliwanchik, B. R. and Sayre, J. T. and Schaffer, K. K. and Sievers, C. and Simard, G. and Smecher, G. and Stark, A. A. and Story, K. T. and Tucker, C. and Vanderlinde, K. and Veach, T. and Vieira, J. D. and Wang, G. and Whitehorn, N. and Yefremenko, V.},
abstractNote = {© 2019. The American Astronomical Society. All rights reserved. We present a measurement of the cosmic microwave background lensing potential using 500 deg2 of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater than unity at lensing multipoles L ≲ 250, using a quadratic estimator on a combination of cosmic microwave background temperature and polarization maps. We report measurements of the lensing potential power spectrum in the multipole range of 100 < L < 2000 from sets of temperature-only (T), polarization-only (POL), and minimum-variance (MV) estimators. We measure the lensing amplitude by taking the ratio of the measured spectrum to the expected spectrum from the best-fit Λ cold dark matter model to the Planck 2015 TT + low P + lensing data set. For the minimum-variance estimator, we find =0.944 0.025 (Sys.) SRC=restricting to only polarization data, we find POL=0.906\pm 0.090 0.040. Considering statistical uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1σ) and is more precise than our temperature-only constraint. We perform null tests and consistency checks and find no evidence for significant contamination.},
doi = {10.3847/1538-4357/ab4186},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 884,
place = {United States},
year = {Mon Oct 14 00:00:00 EDT 2019},
month = {Mon Oct 14 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Bias terms subtracted from the raw MV lensing spectrum: N$^{(0),RD}_{L}$ , N$^{(1)}_{L}$ (converted to C$^{κκ}_{L}$ units, Eq. (12)), and foreground bias ΔC$^{κκ, FG}_{L}$ . The theoretical lensing convergence spectrum for the fiducial cosmology is shown in black. The disconnected term in the CMB 4-point function N$^{(0),RD}_{L}$ is shownmore » in dashed yellow (Eq. (8)). The spurious correlated power between the CMB and the lensing potential N$^{(1)}_{L}$ is shown in dashed pink (Eq. (9)). The sum of these two terms is labeled \Total Noise Bias" in the figure in solid green. The foreground bias from the tSZ trispectrum, CIB trispectrum, and the tSZ and CIB correlation with κ is shown in dashed dark blue (Section 3.3). The total noise bias is also an estimate of the noise in the reconstructed $\phi$ map. Lensing modes with values of L for which the total bias is less than the signal spectrum are measured at signal-to-noise greater than unity. For this measurement, that includes all modes with L≲ 250, or angular scales of roughly a degree and larger.« less

Save / Share:

Works referenced in this record:

Reconstruction of lensing from the cosmic microwave background polarization
journal, October 2003


Bias-hardened CMB lensing
journal, February 2013

  • Namikawa, Toshiya; Hanson, Duncan; Takahashi, Ryuichi
  • Monthly Notices of the Royal Astronomical Society, Vol. 431, Issue 1
  • DOI: 10.1093/mnras/stt195

Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum
journal, June 2017


Year two instrument status of the SPT-3G cosmic microwave background receiver
conference, August 2018

  • Carter, Faustin W.; Cecil, Thomas W.; Chang, Clarence L.
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • DOI: 10.1117/12.2312426

CMB Polarization B -mode Delensing with SPTpol and Herschel
journal, August 2017


Mass Reconstruction with Cosmic Microwave Background Polarization
journal, August 2002

  • Hu, Wayne; Okamoto, Takemi
  • The Astrophysical Journal, Vol. 574, Issue 2
  • DOI: 10.1086/341110

Lensing reconstruction with CMB temperature and polarization
journal, June 2003


MEASUREMENTS OF SUB-DEGREE B -MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA
journal, July 2015


Exploring cosmic origins with CORE: Gravitational lensing of the CMB
journal, April 2018


Measurements of E-Mode Polarization and Temperature-E-Mode Correlation in the Cosmic Microwave Background from 100 Square Degrees of Sptpol data
journal, May 2015


A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of Sptpol data
journal, August 2015


Weak gravitational lensing of the CMB
journal, June 2006


Cmb Lensing Power Spectrum Biases from Galaxies and Clusters Using High-Angular Resolution Temperature maps
journal, April 2014


Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing
journal, August 2018


Cosmic shear of the microwave background: The curl diagnostic
journal, June 2005


HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

Massive neutrinos and cosmology
journal, July 2006


Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters
journal, September 2016


BICEP Array: a multi-frequency degree-scale CMB polarimeter
conference, July 2018

  • Hui, Howard; Ade, P. A. R.; Ahmed, Zeeshan
  • Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX
  • DOI: 10.1117/12.2311725

Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from Polarbear and Cosmic Shear from Subaru Hyper Suprime-Cam
journal, September 2019


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Bias to CMB lensing measurements from the bispectrum of large-scale structure
journal, August 2016


The Quest for B Modes from Inflationary Gravitational Waves
journal, September 2016


Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions
journal, July 2019


Lensing reconstruction in post-Born cosmic microwave background weak lensing
journal, August 2018


Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
journal, July 2011


The 10 Meter South Pole Telescope
journal, May 2011

  • Carlstrom, J. E.; Ade, P. A. R.; Aird, K. A.
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 903
  • DOI: 10.1086/659879

Full-sky lensing reconstruction of gradient and curl modes from CMB maps
journal, January 2012

  • Namikawa, Toshiya; Yamauchi, Daisuke; Taruya, Atsushi
  • Journal of Cosmology and Astroparticle Physics, Vol. 2012, Issue 01
  • DOI: 10.1088/1475-7516/2012/01/007

An upper limit to polarized submillimetre emission in Arp 220
journal, January 2007


Bayesian delensing of CMB temperature and polarization
journal, July 2019


Detection of gravitational lensing in the cosmic microwave background
journal, August 2007


Foreground-Immune Cosmic Microwave Background Lensing with Shear-Only Reconstruction
journal, May 2019


Self-Calibration of Cosmic Microwave Background Polarization Experiments
journal, December 2012


A Measurement of Gravitational Lensing of the Microwave Background Using South pole Telescope data
journal, August 2012


Impact of post-Born lensing on the CMB
journal, August 2016


Lensed CMB simulation and parameter estimation
journal, April 2005


Extragalactic foreground contamination in temperature-based CMB lens reconstruction
journal, March 2014

  • Osborne, Stephen J.; Hanson, Duncan; Doré, Olivier
  • Journal of Cosmology and Astroparticle Physics, Vol. 2014, Issue 03
  • DOI: 10.1088/1475-7516/2014/03/024

Galaxy Clusters Discovered via the Sunyaev-Zel'Dovich Effect in the 2500-Square-Degree Spt-Sz Survey
journal, January 2015

  • Bleem, L. E.; Stalder, B.; de Haan, T.
  • The Astrophysical Journal Supplement Series, Vol. 216, Issue 2
  • DOI: 10.1088/0067-0049/216/2/27

Impact of Cluster Physics on the Sunyaev-Zel'Dovich Power Spectrum
journal, November 2010


The Sunyaev–Zel'dovich effect
journal, March 1999


CMB temperature lensing power reconstruction
journal, February 2011


A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data
journal, November 2017


A Measurement of Secondary Cosmic Microwave Background Anisotropies from the 2500 Square-Degree Spt-Sz Survey
journal, January 2015


South Pole Telescope optics
journal, January 2008

  • Padin, S.; Staniszewski, Z.; Keisler, R.
  • Applied Optics, Vol. 47, Issue 24
  • DOI: 10.1364/AO.47.004418

Planck 2013 results. XVII. Gravitational lensing by large-scale structure
journal, October 2014


Cosmology with the Sunyaev-Zel’dovich Effect
journal, September 2002


Mitigating foreground biases in CMB lensing reconstruction using cleaned gradients
journal, July 2018


Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment
journal, July 2014


Constraints on Primordial Gravitational Waves Using P l a n c k , WMAP, and New BICEP2/ K e c k Observations through the 2015 Season
journal, November 2018


Effect of non-Gaussian lensing deflections on CMB lensing measurements
journal, December 2018


Bicep2/ KECK ARRAY VIII: MEASUREMENT OF GRAVITATIONAL LENSING FROM LARGE-SCALE B -MODE POLARIZATION
journal, December 2016


The NumPy Array: A Structure for Efficient Numerical Computation
journal, March 2011

  • van der Walt, Stéfan; Colbert, S. Chris; Varoquaux, Gaël
  • Computing in Science & Engineering, Vol. 13, Issue 2
  • DOI: 10.1109/MCSE.2011.37

Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data
journal, January 2018

  • Henning, J. W.; Sayre, J. T.; Reichardt, C. L.
  • The Astrophysical Journal, Vol. 852, Issue 2
  • DOI: 10.3847/1538-4357/aa9ff4

Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
journal, March 2019

  • Hikage, Chiaki; Oguri, Masamune; Hamana, Takashi
  • Publications of the Astronomical Society of Japan, Vol. 71, Issue 2
  • DOI: 10.1093/pasj/psz010

Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
journal, September 2016


Exploring cosmic origins with CORE: Gravitational lensing of the CMB
text, January 2018


CASSPER is a semantic segmentation-based particle picking algorithm for single-particle cryo-electron microscopy
journal, February 2021


Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum
text, January 2017

  • Sherwin, Blake; Van Engelen, A.; Sehgal, N.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.43393

Planck 2015 results : VI. LFI mapmaking
journal, September 2016


Planck 2015 results : X. Diffuse component separation: Foreground maps
journal, September 2016


Planck 2015 results : XVI. Isotropy and statistics of the CMB
journal, September 2016


Planck 2015 results : XXVI. The Second
journal, September 2016


Impact of Cluster Physics on the Sunyaev-Zel'dovich Power Spectrum
text, January 2010


Full-sky lensing reconstruction of gradient and curl modes from CMB maps
text, January 2011


Bias-Hardened CMB Lensing
text, January 2012


Planck 2015 results. XIII. Cosmological parameters
text, January 2015


Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters
text, January 2015


The Quest for B Modes from Inflationary Gravitational Waves
text, January 2015


A bias to CMB lensing measurements from the bispectrum of large-scale structure
text, January 2016


Impact of post-Born lensing on the CMB
text, January 2016


CMB Polarization B-mode Delensing with SPTpol and Herschel
text, January 2017


Exploring cosmic origins with CORE: gravitational lensing of the CMB
text, January 2017


Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
text, January 2017


Mitigating Foreground Biases in CMB Lensing Reconstruction Using Cleaned Gradients
text, January 2018


On the effect of non-Gaussian lensing deflections on CMB lensing measurements
text, January 2018


Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
text, January 2018


Cosmology with the Sunyaev-Zel'dovich Effect
text, January 2002


Reconstruction of lensing from the cosmic microwave background polarization
text, January 2003


Cosmic Shear of the Microwave Background: The Curl Diagnostic
text, January 2005


Weak Gravitational Lensing of the CMB
text, January 2006


The Sunyaev-Zel'dovich Effect
text, January 1998


Works referencing / citing this record:

Constraints on Cosmological Parameters from the 500 deg 2 SPTPOL Lensing Power Spectrum
journal, January 2020


Constraints on Cosmological Parameters from the 500 deg$^2$ SPTpol Lensing Power Spectrum
text, January 2019