skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide

Abstract

Solar-driven electrochemical cells can be used to convert carbon dioxide, water, and sunlight into transportation fuels or into precursors to such fuels. The voltage efficiency of such devices depends on the (i) physical properties of its components (catalysts, electrolyte, and membrane); (ii) operating conditions (carbon dioxide flowrate and pressure, current density); and (iii) physical dimensions of the cell. The sources of energy loss in a carbon dioxide reduction (CO2R) cell are the anode and cathode overpotentials, the difference in pH between the anode and cathode, the difference in the partial pressure of carbon dioxide between the bulk electrolyte and the cathode, the ohmic loss across the electrolyte and the diffusional resistances across the boundary layers near the electrodes. We analyze the effects of these losses and propose optimal device configurations for the efficient operation of a CO2R electrochemical cell operating at a current density of 10 mA cm -2. Cell operation at near-neutral bulk pH offers not only lower polarization losses but also better selectivity to CO2R versus hydrogen evolution. Addition of supporting electrolyte to increase its conductivity has a negative impact on cell performance because it reduces the electric field and the solubility of CO 2. Addition of amore » pH buffer reduces the polarization losses but may affect catalyst selectivity. The carbon dioxide flowrate and partial pressure can have severe effects on the cell efficiency if the carbon dioxide supply rate falls below the consumption rate. The overall potential losses can be reduced by use of an anion, rather than a cation, exchange membrane. We also show that the maximum polarization losses occur for the electrochemical synthesis of CO and that such losses are lower for the synthesis of products requiring a larger number of electrons per molecule, assuming a fixed current density. We also find that the reported electrocatalytic activity of copper below -1 V vs. RHE is strongly influenced by excessive polarization of the cathode and, hence, does not represent its true activity at bulk conditions. This article provides useful guidelines for minimizing polarization losses in solar-driven CO2R electrochemical cells and a method for predicting polarization losses and obtaining kinetic overpotentials from measured partial current densities.« less

Authors:
ORCiD logo [1];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1512226
Grant/Contract Number:  
AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 17; Journal Issue: 29; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Singh, Meenesh R., Clark, Ezra L., and Bell, Alexis T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. United States: N. p., 2015. Web. doi:10.1039/c5cp03283k.
Singh, Meenesh R., Clark, Ezra L., & Bell, Alexis T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. United States. doi:10.1039/c5cp03283k.
Singh, Meenesh R., Clark, Ezra L., and Bell, Alexis T. Fri . "Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide". United States. doi:10.1039/c5cp03283k. https://www.osti.gov/servlets/purl/1512226.
@article{osti_1512226,
title = {Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide},
author = {Singh, Meenesh R. and Clark, Ezra L. and Bell, Alexis T.},
abstractNote = {Solar-driven electrochemical cells can be used to convert carbon dioxide, water, and sunlight into transportation fuels or into precursors to such fuels. The voltage efficiency of such devices depends on the (i) physical properties of its components (catalysts, electrolyte, and membrane); (ii) operating conditions (carbon dioxide flowrate and pressure, current density); and (iii) physical dimensions of the cell. The sources of energy loss in a carbon dioxide reduction (CO2R) cell are the anode and cathode overpotentials, the difference in pH between the anode and cathode, the difference in the partial pressure of carbon dioxide between the bulk electrolyte and the cathode, the ohmic loss across the electrolyte and the diffusional resistances across the boundary layers near the electrodes. We analyze the effects of these losses and propose optimal device configurations for the efficient operation of a CO2R electrochemical cell operating at a current density of 10 mA cm-2. Cell operation at near-neutral bulk pH offers not only lower polarization losses but also better selectivity to CO2R versus hydrogen evolution. Addition of supporting electrolyte to increase its conductivity has a negative impact on cell performance because it reduces the electric field and the solubility of CO2. Addition of a pH buffer reduces the polarization losses but may affect catalyst selectivity. The carbon dioxide flowrate and partial pressure can have severe effects on the cell efficiency if the carbon dioxide supply rate falls below the consumption rate. The overall potential losses can be reduced by use of an anion, rather than a cation, exchange membrane. We also show that the maximum polarization losses occur for the electrochemical synthesis of CO and that such losses are lower for the synthesis of products requiring a larger number of electrons per molecule, assuming a fixed current density. We also find that the reported electrocatalytic activity of copper below -1 V vs. RHE is strongly influenced by excessive polarization of the cathode and, hence, does not represent its true activity at bulk conditions. This article provides useful guidelines for minimizing polarization losses in solar-driven CO2R electrochemical cells and a method for predicting polarization losses and obtaining kinetic overpotentials from measured partial current densities.},
doi = {10.1039/c5cp03283k},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 29,
volume = 17,
place = {United States},
year = {2015},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
journal, August 2006