DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phonon localization in heat conduction

Abstract

Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Greenşs function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1];  [4];  [5];  [6]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [6];  [9];  [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  2. Univ. of California, Santa Barbara, CA (United States). Materials Dept.
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Univ. of Science and Technology of China, Hefei (China). National Synchrotron Radiation Lab.
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  7. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research
  8. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science
  9. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science. Dept. of Physics
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of California, Santa Barbara, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1511938
Alternate Identifier(s):
OSTI ID: 1491683; OSTI ID: 1504458
Report Number(s):
BNL-210909-2019-JAAM
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
AC05-00OR22725; SC0012704; SC0001299; SC0001009; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 12; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING

Citation Formats

Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., and Chen, G. Phonon localization in heat conduction. United States: N. p., 2018. Web. doi:10.1126/sciadv.aat9460.
Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., & Chen, G. Phonon localization in heat conduction. United States. https://doi.org/10.1126/sciadv.aat9460
Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., and Chen, G. Fri . "Phonon localization in heat conduction". United States. https://doi.org/10.1126/sciadv.aat9460. https://www.osti.gov/servlets/purl/1511938.
@article{osti_1511938,
title = {Phonon localization in heat conduction},
author = {Luckyanova, M. N. and Mendoza, J. and Lu, H. and Song, B. and Huang, S. and Zhou, J. and Li, M. and Dong, Y. and Zhou, H. and Garlow, J. and Wu, L. and Kirby, B. J. and Grutter, A. J. and Puretzky, A. A. and Zhu, Y. and Dresselhaus, M. S. and Gossard, A. and Chen, G.},
abstractNote = {Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Greenşs function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.},
doi = {10.1126/sciadv.aat9460},
journal = {Science Advances},
number = 12,
volume = 4,
place = {United States},
year = {Fri Dec 21 00:00:00 EST 2018},
month = {Fri Dec 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 80 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: GaAs/AlAs Sls with ErAs nanodots at the interfaces. (A) Schematic of the SL samples. All samples have the same period thickness of 6 nm (3 nm of GaAs and 3 nm of AlAs) while the numbers of periods vary. Three sample sets are distinguished by a varying densitymore » of ErAs dots at the GaAs-AlAs interfaces: (1) reference set with no ErAs, (2) 8% areal coverage with dots, and (3) 25% areal coverage. (B) cross-sectional TEM of a reference SL. (C) high-resolution TEM of the ErAs dots. (D) cross-sectional and (E) plan-view TEM of a sample with 8% ErAs coverage. (F) The 0th order SL Bragg peak in reciprocal lattice unit (r.l.u.) along the sample growth direction, which indicates the average lattice spacing of a SL period and thereby the average lattice strain level in the SLs, where the average strain level difference between an 8-period and 300-period reference sample is determined to be ~4.5×10-5, while for samples with 8% ErAs coverage in (G), the strain level difference remains as low as 1.5×10-4. a.u. arbitrary units.« less

Save / Share:

Works referenced in this record:

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution
journal, November 2007


Strong localization of photons in certain disordered dielectric superlattices
journal, June 1987


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Absence of Diffusion in Certain Random Lattices
journal, March 1958


Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy
journal, May 2003

  • Hÿtch, Martin J.; Putaux, Jean-Luc; Pénisson, Jean-Michel
  • Nature, Vol. 423, Issue 6937
  • DOI: 10.1038/nature01638

Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots
journal, October 2012

  • Feser, Joseph P.; Cahill, David G.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757863

Heat Conductivity of Amorphous Solids: Simulation Results on Model Structures
journal, August 1991


Disordered electronic systems
journal, April 1985


Uncertainty analysis of thermoreflectance measurements
journal, January 2016

  • Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.
  • Review of Scientific Instruments, Vol. 87, Issue 1
  • DOI: 10.1063/1.4939671

Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers
journal, May 2010

  • Pernot, G.; Stoffel, M.; Savic, I.
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2752

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Phonon Optics and Phonon Propagation in Semiconductors
journal, August 1981


Quantitative measurement of displacement and strain fields from HREM micrographs
journal, August 1998


High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Solid-State Thermal Rectifier
journal, November 2006


Highly convergent schemes for the calculation of bulk and surface Green functions
journal, April 1985

  • Sancho, M. P. Lopez; Sancho, J. M. Lopez; Sancho, J. M. L.
  • Journal of Physics F: Metal Physics, Vol. 15, Issue 4
  • DOI: 10.1088/0305-4608/15/4/009

Theory of nuclear spin–lattice relaxation in La 2 CuO 4 at high temperatures
journal, June 1993


Nanoscale thermal transport. II. 2003–2012
journal, March 2014

  • Cahill, David G.; Braun, Paul V.; Chen, Gang
  • Applied Physics Reviews, Vol. 1, Issue 1
  • DOI: 10.1063/1.4832615

Phonon wave interference and thermal bandgap materials
journal, June 2015


Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires
journal, May 2013

  • Nika, Denis L.; Cocemasov, Alexandr I.; Crismari, Dmitrii V.
  • Applied Physics Letters, Vol. 102, Issue 21
  • DOI: 10.1063/1.4807389

Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers
journal, October 2014


Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Phonon group velocity and thermal conduction in superlattices
journal, July 1999

  • Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphrey J.
  • Physical Review B, Vol. 60, Issue 4
  • DOI: 10.1103/PhysRevB.60.2627

Disruption of superlattice phonons by interfacial mixing
journal, October 2013

  • Huberman, Samuel C.; Larkin, Jason M.; McGaughey, Alan J. H.
  • Physical Review B, Vol. 88, Issue 15
  • DOI: 10.1103/PhysRevB.88.155311

Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs∕InGaAlAs superlattices
journal, June 2006

  • Kim, Woochul; Singer, Suzanne L.; Majumdar, Arun
  • Applied Physics Letters, Vol. 88, Issue 24
  • DOI: 10.1063/1.2207829

Effect of nanodot areal density and period on thermal conductivity in SiGe∕Si nanodot superlattices
journal, February 2008

  • Lee, Minjoo Larry; Venkatasubramanian, Rama
  • Applied Physics Letters, Vol. 92, Issue 5
  • DOI: 10.1063/1.2842388

Anderson Localization of Thermal Phonons Leads to a Thermal Conductivity Maximum
journal, December 2016


The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport
journal, March 2007

  • Zhang, W.; Fisher, T. S.; Mingo, N.
  • Numerical Heat Transfer, Part B: Fundamentals, Vol. 51, Issue 4
  • DOI: 10.1080/10407790601144755

One-Parameter Scaling of Localization Length and Conductance in Disordered Systems
journal, November 1981


Localization of acoustic waves
journal, May 1985


Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
journal, January 2000


Minimum Thermal Conductivity of Superlattices
journal, January 2000


Frequency dependence of the thermal conductivity of semiconductor alloys
journal, August 2007


Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics
journal, November 1999

  • Kadow, C.; Fleischer, S. B.; Ibbetson, J. P.
  • Applied Physics Letters, Vol. 75, Issue 22
  • DOI: 10.1063/1.125384

Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


Heat transport in silicon from first-principles calculations
journal, August 2011


Thermal conductance of epitaxial interfaces
journal, February 2003


Direct observation of chemical short-range order in a medium-entropy alloy
journal, April 2021


Lattice thermal transport in two-dimensional alloys and fractal heterostructures
journal, January 2021

  • Krishnamoorthy, Aravind; Baradwaj, Nitish; Nakano, Aiichiro
  • Scientific Reports, Vol. 11, Issue 1
  • DOI: 10.1038/s41598-021-81055-4

Disordered Electronic Systems
journal, December 1988

  • Al'tshuler, Boris L.; Lee, Patrick A.
  • Physics Today, Vol. 41, Issue 12
  • DOI: 10.1063/1.881139

Heat transport in silicon from first principles calculations
text, January 2011


Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy
journal, May 2003

  • Hÿtch, Martin J.; Putaux, Jean-Luc; Pénisson, Jean-Michel
  • Nature, Vol. 423, Issue 6937
  • DOI: 10.1038/nature01638

Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers
journal, May 2010

  • Pernot, G.; Stoffel, M.; Savic, I.
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2752

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Phonon wave interference and thermal bandgap materials
journal, June 2015


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots
journal, October 2012

  • Feser, Joseph P.; Cahill, David G.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757863

Uncertainty analysis of thermoreflectance measurements
journal, January 2016

  • Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.
  • Review of Scientific Instruments, Vol. 87, Issue 1
  • DOI: 10.1063/1.4939671

Phonon Transport in Isotope-Disordered Carbon and Boron-Nitride Nanotubes: Is Localization Observable?
journal, October 2008


Role of Surface-Segregation-Driven Intermixing on the Thermal Transport through Planar Si / Ge Superlattices
journal, September 2013


Observation of Folded Acoustic Phonons in a Semiconductor Superlattice
journal, July 1980


Phonon transport in strong-scattering media
journal, January 1994


Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Phonon Optics and Phonon Propagation in Semiconductors
journal, August 1981


Thermal Conductivity Inhibition in Phonon Engineered Core-Shell Cross-Section Modulated Si/Ge Nanowires
text, January 2013


Works referencing / citing this record:

Spectral Phonon Transport Engineering Using Stacked Superlattice Structures
journal, September 2019

  • Xiong, Rui; Yang, Cong; Wang, Qinzheng
  • International Journal of Thermophysics, Vol. 40, Issue 9
  • DOI: 10.1007/s10765-019-2552-y

Heat transfer properties of Morpho butterfly wings and the dependence of these properties on the wing surface structure
journal, January 2020

  • Kawabe, Mari; Maeda, Hirotaka; Kasuga, Toshihiro
  • RSC Advances, Vol. 10, Issue 5
  • DOI: 10.1039/c9ra09990e

New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
journal, May 2019

  • Urban, Jeffrey J.; Menon, Akanksha K.; Tian, Zhiting
  • Journal of Applied Physics, Vol. 125, Issue 18
  • DOI: 10.1063/1.5092525

Effect of interface density, quality and period on the lattice thermal conductivity of nanocomposite materials
journal, January 2020

  • Thomas, Iorwerth O.; Srivastava, G. P.
  • Journal of Applied Physics, Vol. 127, Issue 2
  • DOI: 10.1063/1.5099539

Origins of significant reduction of lattice thermal conductivity in graphene allotropes
journal, October 2019


Mode-conversion effects of phonons on Anderson localization
journal, December 2019


Anderson Localization Quenches Thermal Transport in Aperiodic Superlattices
journal, March 2019


Machine-learning-based interatomic potential for phonon transport in perfect crystalline Si and crystalline Si with vacancies
journal, July 2019


Quantum mechanical modeling of anharmonic phonon-phonon scattering in nanostructures
journal, November 2020


Lattice Thermal Transport in Two-Dimensional Alloys and Fractal Heterostructures
text, January 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.