skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phonon localization in heat conduction

Abstract

Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Green's function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1];  [4];  [5];  [6]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [6];  [9];  [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  2. Univ. of California, Santa Barbara, CA (United States). Materials Dept.
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Univ. of Science and Technology of China, Hefei (China). National Synchrotron Radiation Lab.
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source
  6. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  7. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research
  8. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science
  9. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Electrical Engineering and Computer Science. Dept. of Physics
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Brookhaven National Lab. (BNL), Upton, NY (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of California, Santa Barbara, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1511938
Alternate Identifier(s):
OSTI ID: 1491683; OSTI ID: 1504458
Report Number(s):
BNL-210909-2019-JAAM
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
SC0012704; SC0001299; SC0001009; AC02-06CH11357; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 12; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING

Citation Formats

Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., and Chen, G. Phonon localization in heat conduction. United States: N. p., 2018. Web. doi:10.1126/sciadv.aat9460.
Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., & Chen, G. Phonon localization in heat conduction. United States. doi:10.1126/sciadv.aat9460.
Luckyanova, M. N., Mendoza, J., Lu, H., Song, B., Huang, S., Zhou, J., Li, M., Dong, Y., Zhou, H., Garlow, J., Wu, L., Kirby, B. J., Grutter, A. J., Puretzky, A. A., Zhu, Y., Dresselhaus, M. S., Gossard, A., and Chen, G. Fri . "Phonon localization in heat conduction". United States. doi:10.1126/sciadv.aat9460. https://www.osti.gov/servlets/purl/1511938.
@article{osti_1511938,
title = {Phonon localization in heat conduction},
author = {Luckyanova, M. N. and Mendoza, J. and Lu, H. and Song, B. and Huang, S. and Zhou, J. and Li, M. and Dong, Y. and Zhou, H. and Garlow, J. and Wu, L. and Kirby, B. J. and Grutter, A. J. and Puretzky, A. A. and Zhu, Y. and Dresselhaus, M. S. and Gossard, A. and Chen, G.},
abstractNote = {Nondiffusive phonon thermal transport, extensively observed in nanostructures, has largely been attributed to classical size effects, ignoring the wave nature of phonons. We report localization behavior in phonon heat conduction due to multiple scattering and interference events of broadband phonons, by measuring the thermal conductivities of GaAs/AlAs superlattices with ErAs nanodots randomly distributed at the interfaces. With an increasing number of superlattice periods, the measured thermal conductivities near room temperature increased and eventually saturated, indicating a transition from ballistic to diffusive transport. In contrast, at cryogenic temperatures the thermal conductivities first increased but then decreased, signaling phonon wave localization, as supported by atomistic Green's function simulations. The discovery of phonon localization suggests a new path forward for engineering phonon thermal transport.},
doi = {10.1126/sciadv.aat9460},
journal = {Science Advances},
number = 12,
volume = 4,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: GaAs/AlAs superlattices with ErAs nanodots at the interfaces. (A) Schematic of the SL samples. All samples have the same period thickness of 6 nm (3 nm of GaAs and 3 nm of AlAs) while the numbers of periods vary. Three sample sets are distinguished by a varying densitymore » of ErAs dots at the GaAs-AlAs interfaces: (1) reference set with no ErAs, (2) 8% areal coverage with dots, and (3) 25% areal coverage. (B) cross-sectional TEM of a reference SL. (C) high-resolution TEM of the ErAs dots. (D) cross-sectional and (E) plan-view TEM of a sample with 8% ErAs coverage. (F) The 0th order SL Bragg peak in reciprocal lattice unit (r.l.u.) along the sample growth direction, which indicates the average lattice spacing of a SL period and thereby the average lattice strain level in the SLs, where the average strain level difference between an 8-period and 300-period reference sample is determined to be ~4.5×10-5, while for samples with 8% ErAs coverage in (G), the strain level difference remains as low as 1.5×10-4.« less

Save / Share:

Works referenced in this record:

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution
journal, November 2007


Observation of Folded Acoustic Phonons in a Semiconductor Superlattice
journal, July 1980


Strong localization of photons in certain disordered dielectric superlattices
journal, June 1987


QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Absence of Diffusion in Certain Random Lattices
journal, March 1958


Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy
journal, May 2003

  • Hÿtch, Martin J.; Putaux, Jean-Luc; Pénisson, Jean-Michel
  • Nature, Vol. 423, Issue 6937
  • DOI: 10.1038/nature01638

Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots
journal, October 2012

  • Feser, Joseph P.; Cahill, David G.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757863

Heat Conductivity of Amorphous Solids: Simulation Results on Model Structures
journal, August 1991


Disordered electronic systems
journal, April 1985


Uncertainty analysis of thermoreflectance measurements
journal, January 2016

  • Yang, Jia; Ziade, Elbara; Schmidt, Aaron J.
  • Review of Scientific Instruments, Vol. 87, Issue 1
  • DOI: 10.1063/1.4939671

Reduction of thermal conductivity in phononic nanomesh structures
journal, July 2010

  • Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas
  • Nature Nanotechnology, Vol. 5, Issue 10
  • DOI: 10.1038/nnano.2010.149

Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers
journal, May 2010

  • Pernot, G.; Stoffel, M.; Savic, I.
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2752

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance
journal, March 2013

  • Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2630

Phonon Optics and Phonon Propagation in Semiconductors
journal, August 1981


Quantitative measurement of displacement and strain fields from HREM micrographs
journal, August 1998


High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Solid-State Thermal Rectifier
journal, November 2006


Highly convergent schemes for the calculation of bulk and surface Green functions
journal, April 1985

  • Sancho, M. P. Lopez; Sancho, J. M. Lopez; Sancho, J. M. L.
  • Journal of Physics F: Metal Physics, Vol. 15, Issue 4
  • DOI: 10.1088/0305-4608/15/4/009

Theory of nuclear spin–lattice relaxation in La 2 CuO 4 at high temperatures
journal, June 1993


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.