DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes

Abstract

Although several principles have been recognized to fabricate a nominal “better” binder, there continues to be a lack of a rational design and synthesis approach that would meet the robust criteria required for silicon (Si) anodes. Herein, we report a synthetic polymer binder, i.e., catechol-functionalized chitosan cross-linked by glutaraldehyde (CS-CG+GA), that serves dual functionalities: (a) wetness-resistant adhesion capability via catechol grafting and (b) mechanical robustness via in situ formation of a three-dimensional (3D) network. A SiNP-based anode with a designed functional polymer network (CS-CG10%+6%GA) exhibits a capacity retention of 91.5% after 100 cycles (2144 ± 14 mAh/g). Properties that are traditionally considered to be advantageous, including stronger adhesion strength and higher mechanical robustness, do not always improve the binder performance. A clear relationship between these properties and ultimate electrochemical performance is established by assessing the rheological behavior, mechanical property, adhesion force, peel stress, morphology evolution, and semiquantitative evaluation. This study provides a clear path for the rational design of high-performance functional polymer binders for not only Si-based electrodes but also other types of alloy and conversion-based electrodes.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Georgia Inst. of Technology, Atlanta, GA (United States). School of Material Science and Engineering
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1511916
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 4; Journal Issue: 5; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Cao, Pengfei, Yang, Guang, Li, Bingrui, Zhang, Yiman, Zhao, Sheng, Zhang, Shuo, Erwin, Andrew J., Zhang, Zhengcheng, Sokolov, Alexei P., Nanda, Jagjit, and Saito, Tomonori. Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. United States: N. p., 2019. Web. doi:10.1021/acsenergylett.9b00815.
Cao, Pengfei, Yang, Guang, Li, Bingrui, Zhang, Yiman, Zhao, Sheng, Zhang, Shuo, Erwin, Andrew J., Zhang, Zhengcheng, Sokolov, Alexei P., Nanda, Jagjit, & Saito, Tomonori. Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. United States. https://doi.org/10.1021/acsenergylett.9b00815
Cao, Pengfei, Yang, Guang, Li, Bingrui, Zhang, Yiman, Zhao, Sheng, Zhang, Shuo, Erwin, Andrew J., Zhang, Zhengcheng, Sokolov, Alexei P., Nanda, Jagjit, and Saito, Tomonori. Mon . "Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes". United States. https://doi.org/10.1021/acsenergylett.9b00815. https://www.osti.gov/servlets/purl/1511916.
@article{osti_1511916,
title = {Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes},
author = {Cao, Pengfei and Yang, Guang and Li, Bingrui and Zhang, Yiman and Zhao, Sheng and Zhang, Shuo and Erwin, Andrew J. and Zhang, Zhengcheng and Sokolov, Alexei P. and Nanda, Jagjit and Saito, Tomonori},
abstractNote = {Although several principles have been recognized to fabricate a nominal “better” binder, there continues to be a lack of a rational design and synthesis approach that would meet the robust criteria required for silicon (Si) anodes. Herein, we report a synthetic polymer binder, i.e., catechol-functionalized chitosan cross-linked by glutaraldehyde (CS-CG+GA), that serves dual functionalities: (a) wetness-resistant adhesion capability via catechol grafting and (b) mechanical robustness via in situ formation of a three-dimensional (3D) network. A SiNP-based anode with a designed functional polymer network (CS-CG10%+6%GA) exhibits a capacity retention of 91.5% after 100 cycles (2144 ± 14 mAh/g). Properties that are traditionally considered to be advantageous, including stronger adhesion strength and higher mechanical robustness, do not always improve the binder performance. A clear relationship between these properties and ultimate electrochemical performance is established by assessing the rheological behavior, mechanical property, adhesion force, peel stress, morphology evolution, and semiquantitative evaluation. This study provides a clear path for the rational design of high-performance functional polymer binders for not only Si-based electrodes but also other types of alloy and conversion-based electrodes.},
doi = {10.1021/acsenergylett.9b00815},
journal = {ACS Energy Letters},
number = 5,
volume = 4,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Small things make a big difference: binder effects on the performance of Li and Na batteries
journal, January 2014

  • Chou, Shu-Lei; Pan, Yuede; Wang, Jia-Zhao
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 38
  • DOI: 10.1039/C4CP02475C

Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density
journal, July 2017

  • Li, Jun-Tao; Wu, Zhan-Yu; Lu, Yan-Qiu
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201701185

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Li-alloy based anode materials for Li secondary batteries
journal, January 2010

  • Park, Cheol-Min; Kim, Jae-Hun; Kim, Hansu
  • Chemical Society Reviews, Vol. 39, Issue 8, p. 3115-3141
  • DOI: 10.1039/b919877f

Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder
journal, October 2017


Correlation between glass transition temperature and chain structure for randomly crosslinked high polymers
journal, September 1996


Polycation Binders: An Effective Approach toward Lithium Polysulfide Sequestration in Li–S Batteries
journal, October 2017


Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer
journal, September 2017


Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes
journal, November 2017

  • Gao, Yue; Yi, Ran; Li, Yuguang C.
  • Journal of the American Chemical Society, Vol. 139, Issue 48
  • DOI: 10.1021/jacs.7b07584

Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries
journal, March 2017


Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries
journal, January 2014

  • Gu, Meng; Xiao, Xing-Cheng; Liu, Gao
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03684

Strategy for Boosting Li-Ion Current in Silicon Nanoparticles
journal, August 2018


In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes
journal, September 2016


The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries
journal, September 2017


Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries
journal, January 2018


An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium-Sulfur Batteries
journal, July 2017

  • Klein, Michael J.; Dolocan, Andrei; Zu, Chenxi
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201701122

Tailoring Hollow Silicon–Carbon Nanocomposites As High-Performance Anodes in Secondary Lithium-Based Batteries through Economical Chemistry
journal, December 2014

  • Jaumann, Tony; Herklotz, Markus; Klose, Markus
  • Chemistry of Materials, Vol. 27, Issue 1
  • DOI: 10.1021/cm502520y

Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid
journal, October 2010

  • Magasinski, Alexandre; Zdyrko, Bogdan; Kovalenko, Igor
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100871y

Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries
journal, December 2012

  • Ryou, Myung-Hyun; Kim, Jangbae; Lee, Inhwa
  • Advanced Materials, Vol. 25, Issue 11
  • DOI: 10.1002/adma.201203981

Novel conductive binder for high-performance silicon anodes in lithium ion batteries
journal, June 2017


Mechanical Property Evolution of Silicon Composite Electrodes Studied by Environmental Nanoindentation
journal, January 2018

  • Wang, Yikai; Zhang, Qinglin; Li, Dawei
  • Advanced Energy Materials, Vol. 8, Issue 10
  • DOI: 10.1002/aenm.201702578

The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes
journal, January 2016

  • Lopez, Jeffrey; Chen, Zheng; Wang, Chao
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b11363

Cross-Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium-Ion Batteries
journal, January 2016

  • Gao, Hongcai; Zhou, Weidong; Jang, Ji-Hoon
  • Advanced Energy Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aenm.201502130

Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries
journal, July 2017


Multifunctional Molecular Design as an Efficient Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries
journal, October 2014

  • Jeena, M. T.; Lee, Jung-In; Kim, Si Hoon
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 20
  • DOI: 10.1021/am504854x

A Robust Ion-Conductive Biopolymer as a Binder for Si Anodes of Lithium-Ion Batteries
journal, May 2015

  • Liu, Jie; Zhang, Qian; Zhang, Tao
  • Advanced Functional Materials, Vol. 25, Issue 23
  • DOI: 10.1002/adfm.201500589

Dual-functional gum arabic binder for silicon anodes in lithium ion batteries
journal, March 2015


A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries
journal, January 2014

  • Jeong, You Kyeong; Kwon, Tae-woo; Lee, Inhwa
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl404237j

Dynamic Cross-Linking of Polymeric Binders Based on Host–Guest Interactions for Silicon Anodes in Lithium Ion Batteries
journal, October 2015


Significance of ferroelectric polarization in poly (vinylidene difluoride) binder for high-rate Li-ion diffusion
journal, February 2017


A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes
journal, February 2016


A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries
journal, July 2012

  • Koo, Bonjae; Kim, Hyunjung; Cho, Younghyun
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201201568

Silicon Composite Electrodes with Dynamic Ionic Bonding
journal, May 2017

  • Kang, Sen; Yang, Ke; White, Scott R.
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201700045

Ionically Conductive Self-Healing Binder for Low Cost Si Microparticles Anodes in Li-Ion Batteries
journal, February 2018

  • Munaoka, Takatoshi; Yan, Xuzhou; Lopez, Jeffrey
  • Advanced Energy Materials, Vol. 8, Issue 14
  • DOI: 10.1002/aenm.201703138

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Chitosan—A versatile semi-synthetic polymer in biomedical applications
journal, August 2011


Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries
journal, January 2016

  • Bie, Yitian; Yang, Jun; Liu, Xiaolin
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b10616

Robust, self-healing hydrogels synthesised from catechol rich polymers
journal, January 2015

  • Yavvari, Prabhu S.; Srivastava, Aasheesh
  • Journal of Materials Chemistry B, Vol. 3, Issue 5
  • DOI: 10.1039/C4TB01307G

Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation
journal, July 2017

  • Cao, Peng-Fei; Li, Bingrui; Hong, Tao
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 31
  • DOI: 10.1021/acsami.7b09017

Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries
journal, January 2018

  • Cao, Peng-Fei; Naguib, Michael; Du, Zhijia
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 4
  • DOI: 10.1021/acsami.7b13205

Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder
journal, January 2008

  • Li, Jing; Christensen, L.; Obrovac, M. N.
  • Journal of The Electrochemical Society, Vol. 155, Issue 3
  • DOI: 10.1149/1.2830545

Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries
journal, February 2014


Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes
journal, August 2016

  • Cho, Inseong; Gong, Seokhyeon; Song, Danoh
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30945

Graft Density Dependence of Main Chain Stiffness in Molecular Rod Brushes
journal, August 2015


Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries
journal, September 2015

  • Pieczonka, Nicholas P. W.; Borgel, Valentina; Ziv, Baruch
  • Advanced Energy Materials, Vol. 5, Issue 23
  • DOI: 10.1002/aenm.201501008

Highly reversible carbon–nano-silicon composite anodes for lithium rechargeable batteries
journal, April 2009


High performance Si/C@CNF composite anode for solid-polymer lithium-ion batteries
journal, August 2011


A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery
journal, January 2014

  • Liu, Jie; Zhang, Qian; Wu, Zhan-Yu
  • Chemical Communications, Vol. 50, Issue 48
  • DOI: 10.1039/c4cc00081a

A generalized theory for the glass transition temperature of crosslinked and uncrosslinked polymers
journal, August 1990

  • Stutz, H.; Illers, K. -H.; Mertes, J.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 28, Issue 9
  • DOI: 10.1002/polb.1990.090280906

Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers
journal, February 1955


On the second-order transition of a rubber
journal, November 1964

  • DiMarzio, E. A.
  • Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, Vol. 68A, Issue 6
  • DOI: 10.6028/jres.068A.059

Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries
journal, January 2016

  • Chen, Chao; Lee, Sang Ha; Cho, Misuk
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 4
  • DOI: 10.1021/acsami.5b10673

Works referencing / citing this record:

Room‐Temperature Crosslinkable Natural Polymer Binder for High‐Rate and Stable Silicon Anodes
journal, December 2019

  • Ryu, Jaegeon; Kim, Sungho; Kim, Jimin
  • Advanced Functional Materials, Vol. 30, Issue 9
  • DOI: 10.1002/adfm.201908433

Biomaterials for High‐Energy Lithium‐Based Batteries: Strategies, Challenges, and Perspectives
journal, September 2019


Facile Fabrication of Porous Si Microspheres from Low‐Cost Precursors for High‐Capacity Electrode
journal, December 2019

  • Geng, Liyuan; Yang, Dandan; Gao, Shilun
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901726

Polymer Binders Constructed through Dynamic Noncovalent Bonds for High‐Capacity Silicon‐Based Anodes
journal, September 2009

  • Pan, Yiyang; Gao, Shilun; Sun, Feiyuan
  • Chemistry – A European Journal, Vol. 25, Issue 47
  • DOI: 10.1002/chem.201900988