skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supersonic plasma turbulence in the laboratory

Abstract

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

Authors:
 [1];  [1];  [2];  [3];  [4]; ORCiD logo [5];  [4];  [6];  [7];  [8];  [9];  [8];  [7];  [10];  [11];  [12];  [4];  [13];  [4];  [7] more »; ORCiD logo [14];  [15]; ORCiD logo [4];  [16]; ORCiD logo [7];  [17]; ORCiD logo [7];  [12]; ORCiD logo [5];  [4];  [4] « less
  1. Univ. of Oxford, Oxford (United Kingdom); Univ. of Nevada, Reno, NV (United States)
  2. Univ. of Oxford, Oxford (United Kingdom); Sorbonne Univ., Palaiseau cedex (France)
  3. Univ. der Bundeswehr Munchen, Neubiberg (Germany)
  4. Univ. of Oxford, Oxford (United Kingdom)
  5. Univ. of York, York (United Kingdom)
  6. STFC Rutherford Appleton Lab., Didcot (United Kingdom); Univ. of Strathclyde, Glasgow (United Kingdom)
  7. STFC Rutherford Appleton Lab., Didcot (United Kingdom)
  8. AWE, Reading (United Kingdom)
  9. Max-Planck-Institut fur Kernphysik, Heidelberg (Germany)
  10. Sorbonne Univ., Palaiseau cedex (France); Osaka Univ., Osaka (Japan)
  11. Osaka Univ., Osaka (Japan)
  12. Univ. of Chicago, Chicago, IL (United States)
  13. Sorbonne Univ., Palaiseau cedex (France)
  14. Queens Univ. Belfast, Belfast (United Kingdom)
  15. UNIST, Ulsan (Korea)
  16. Inst. of Laser Engineering, Osaka (Japan)
  17. California Inst. of Technology (CalTech), Pasadena, CA (United States); Univ. of Otago, Dunedin (New Zealand)
Publication Date:
Research Org.:
Univ. of Nevada, Reno, NV (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1511862
Grant/Contract Number:  
SC0019268
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

White, T. G., Oliver, M. T., Mabey, P., Kühn-Kauffeldt, M., Bott, A. F. A., Döhl, L. N. K., Bell, A. R., Bingham, R., Clarke, R., Foster, J., Giacinti, G., Graham, P., Heathcote, R., Koenig, M., Kuramitsu, Y., Lamb, D. Q., Meinecke, J., Michel, Th., Miniati, F., Notley, M., Reville, B., Ryu, D., Sarkar, S., Sakawa, Y., Selwood, M. P., Squire, J., Scott, R. H. H., Tzeferacos, P., Woolsey, N., Schekochihin, A. A., and Gregori, G. Supersonic plasma turbulence in the laboratory. United States: N. p., 2019. Web. doi:10.1038/s41467-019-09498-y.
White, T. G., Oliver, M. T., Mabey, P., Kühn-Kauffeldt, M., Bott, A. F. A., Döhl, L. N. K., Bell, A. R., Bingham, R., Clarke, R., Foster, J., Giacinti, G., Graham, P., Heathcote, R., Koenig, M., Kuramitsu, Y., Lamb, D. Q., Meinecke, J., Michel, Th., Miniati, F., Notley, M., Reville, B., Ryu, D., Sarkar, S., Sakawa, Y., Selwood, M. P., Squire, J., Scott, R. H. H., Tzeferacos, P., Woolsey, N., Schekochihin, A. A., & Gregori, G. Supersonic plasma turbulence in the laboratory. United States. doi:10.1038/s41467-019-09498-y.
White, T. G., Oliver, M. T., Mabey, P., Kühn-Kauffeldt, M., Bott, A. F. A., Döhl, L. N. K., Bell, A. R., Bingham, R., Clarke, R., Foster, J., Giacinti, G., Graham, P., Heathcote, R., Koenig, M., Kuramitsu, Y., Lamb, D. Q., Meinecke, J., Michel, Th., Miniati, F., Notley, M., Reville, B., Ryu, D., Sarkar, S., Sakawa, Y., Selwood, M. P., Squire, J., Scott, R. H. H., Tzeferacos, P., Woolsey, N., Schekochihin, A. A., and Gregori, G. Mon . "Supersonic plasma turbulence in the laboratory". United States. doi:10.1038/s41467-019-09498-y. https://www.osti.gov/servlets/purl/1511862.
@article{osti_1511862,
title = {Supersonic plasma turbulence in the laboratory},
author = {White, T. G. and Oliver, M. T. and Mabey, P. and Kühn-Kauffeldt, M. and Bott, A. F. A. and Döhl, L. N. K. and Bell, A. R. and Bingham, R. and Clarke, R. and Foster, J. and Giacinti, G. and Graham, P. and Heathcote, R. and Koenig, M. and Kuramitsu, Y. and Lamb, D. Q. and Meinecke, J. and Michel, Th. and Miniati, F. and Notley, M. and Reville, B. and Ryu, D. and Sarkar, S. and Sakawa, Y. and Selwood, M. P. and Squire, J. and Scott, R. H. H. and Tzeferacos, P. and Woolsey, N. and Schekochihin, A. A. and Gregori, G.},
abstractNote = {The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.},
doi = {10.1038/s41467-019-09498-y},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : Experimental configuration and magnetic-field fluctuations. a Experimental configuration. Two counter-propagating supersonic jets are launched by means of optical-laser ablation of thin fluorinated plastic foils separated by 4 cm. Each foil is irradiated by three frequency-doubled (527-nm-wavelength) lasers, each carrying 130 ± 20 J of energy in amore » 2 ns pulse. The jets are passed through two misaligned plastic grids and collide, forming a central region of supersonic turbulence. Magnetic fluctuations, created as the magnetic field imposed by external permanent magnets (gray dashed lines) is advected by the flow, are measured with an induction coil and used to deduce velocity fluctuations. b Temporal evolution of the y-component (vertical in the top panel) of the magnetic field, as measured by the induction loop. The shaded regions represent the intervals over which the FFT was performed in calculating the magnetic-field power spectra« less

Save / Share:

Works referenced in this record:

Two Regimes of Turbulent Fragmentation and the Stellar Initial Mass Function from Primordial to Present‐Day Star Formation
journal, June 2007

  • Padoan, Paolo; Nordlund, Ake; Kritsuk, Alexei G.
  • The Astrophysical Journal, Vol. 661, Issue 2
  • DOI: 10.1086/516623

The Stellar Initial Mass Function from Turbulent Fragmentation
journal, September 2002

  • Padoan, Paolo; Nordlund, Ake
  • The Astrophysical Journal, Vol. 576, Issue 2
  • DOI: 10.1086/341790

Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
journal, June 2015

  • Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1502079112

The Power Spectrum of Supersonic Turbulence in Perseus
journal, November 2006

  • Padoan, Paolo; Juvela, Mika; Kritsuk, Alexei
  • The Astrophysical Journal, Vol. 653, Issue 2
  • DOI: 10.1086/510620

The Average Magnetic Field Strength in Molecular Clouds: New Evidence of Super-Alfvnic Turbulence
journal, February 2004

  • Padoan, Paolo; Jimenez, Raul; Juvela, Mika
  • The Astrophysical Journal, Vol. 604, Issue 1
  • DOI: 10.1086/383308

Physics and Regimes of Supersonic Combustion
journal, March 2010

  • Ingenito, Antonella; Bruno, Claudio
  • AIAA Journal, Vol. 48, Issue 3
  • DOI: 10.2514/1.43652

Density Fields in Burgers and KdV–Burgers Turbulence
journal, August 1996


The Relation Between gas Density and Velocity Power Spectra in Galaxy Clusters: Qualitative Treatment and Cosmological Simulations
journal, May 2014


Interstellar Turbulence II: Implications and Effects
journal, September 2004


Supersonic Turbulence and Structure of Interstellar Molecular Clouds
journal, July 2002


Scaling Relations of Supersonic Turbulence in Star‐forming Molecular Clouds
journal, July 2002

  • Boldyrev, Stanislav; Nordlund, Ake; Padoan, Paolo
  • The Astrophysical Journal, Vol. 573, Issue 2
  • DOI: 10.1086/340758

Mach number study of supersonic turbulence: the properties of the density field
journal, June 2016

  • Konstandin, L.; Schmidt, W.; Girichidis, P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 4
  • DOI: 10.1093/mnras/stw1313

Magnetic field amplification in turbulent astrophysical plasmas
journal, November 2016


Turbulence and star formation in molecular clouds
journal, April 1981


On the universality of supersonic turbulence
journal, September 2013

  • Federrath, Christoph
  • Monthly Notices of the Royal Astronomical Society, Vol. 436, Issue 2
  • DOI: 10.1093/mnras/stt1644

Evidence of shocklets in a counterflow supersonic shear layer
journal, February 1995


Power Spectrum of the Density of Cold Atomic Gas in the Galaxy toward Cassiopeia A and Cygnus A
journal, November 2000

  • Deshpande, A. A.; Dwarakanath, K. S.; Goss, W. M.
  • The Astrophysical Journal, Vol. 543, Issue 1
  • DOI: 10.1086/317104

Aero-Optical Effects of Supersonic Boundary Layers
journal, March 2012

  • Gordeyev, Stanlislav; Jumper, Eric; Hayden, Tim E.
  • AIAA Journal, Vol. 50, Issue 3
  • DOI: 10.2514/1.J051266

Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
journal, August 2007


Effects of vent overpressure on buoyant eruption columns: Implications for plume stability
journal, April 2008

  • Ogden, Darcy E.; Glatzmaier, Gary A.; Wohletz, Kenneth H.
  • Earth and Planetary Science Letters, Vol. 268, Issue 3-4
  • DOI: 10.1016/j.epsl.2008.01.014

Molecular cooling and thermal balance of dense interstellar clouds
journal, June 1978

  • Goldsmith, P. F.; Langer, W. D.
  • The Astrophysical Journal, Vol. 222
  • DOI: 10.1086/156206

Comparing the statistics of interstellar turbulence in simulations and observations: Solenoidal versus compressive turbulence forcing
journal, March 2010


Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows
journal, August 2005

  • Kim, Jongsoo; Ryu, Dongsu
  • The Astrophysical Journal, Vol. 630, Issue 1
  • DOI: 10.1086/491600

Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B
journal, March 2017


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

The Statistics of Supersonic Isothermal Turbulence
journal, August 2007

  • Kritsuk, Alexei G.; Norman, Michael L.; Padoan, Paolo
  • The Astrophysical Journal, Vol. 665, Issue 1
  • DOI: 10.1086/519443

Interstellar Turbulence I: Observations and Processes
journal, September 2004


The distribution of density in supersonic turbulence
journal, July 2017

  • Squire, Jonathan; Hopkins, Philip F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 3
  • DOI: 10.1093/mnras/stx1817

    Works referencing / citing this record:

    Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
    journal, January 2020

    • Lu, Yingchao; Li, Shengtai; Li, Hui
    • Physics of Plasmas, Vol. 27, Issue 1
    • DOI: 10.1063/1.5126149

    Polarized radiative transfer, rotation measure fluctuations, and large-scale magnetic fields
    journal, September 2019

    • On, Alvina Y. L.; Chan, Jennifer Y. H.; Wu, Kinwah
    • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
    • DOI: 10.1093/mnras/stz2683

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.