skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain-induced ferroelectricity and spin-lattice coupling in SrMn O 3 thin films

Abstract

Designing novel multiferroic materials with simultaneous ferroelectric and magnetic orders has been one of the focal points over the last decade due to the promising applications and rich physics involved. In this study, using epitaxial strain (up to 3.8%) as tuning knob, we successfully introduce multiferroicity with prominent high-temperature ferroelectricity into the paraelectric SrMnO3.More interestingly, the experimental temperature-dependent ferroelectric and magnetic studies suggest that the emergent antiferromagnetic order below 100 K greatly enhances the ferroelectric polarization due to the spin-order-induced ionic displacements. We envision that the strain-mediated spin-phonon coupling can be utilized as a pathway to discover functionalities in a wide range of antiferromagnetic insulators with delicate epitaxial manipulations.

Authors:
 [1];  [2];  [3];  [4];  [2];  [1];  [1];  [1];  [5];  [5];  [3];  [6];  [7];  [8]
  1. Tsinghua Univ., Beijing (China)
  2. Fudan Univ., Shanghai (China)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. Durham Univ. (United Kingdom)
  5. Swiss Federal Lab. for Materials Science and Technology, Dubendorf (Switzerland)
  6. Fudan Univ., Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)
  7. RIKEN, Saitama (Japan)
  8. Tsinghua Univ., Beijing (China); RIKEN, Saitama (Japan); Collaborative Innovation Center of Quantum Matter, Beijing (China)
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1511828
Alternate Identifier(s):
OSTI ID: 1455087
Grant/Contract Number:  
SC0012375; SC00012375
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 23; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Guo, J. W., Wang, P. S., Yuan, Y., He, Q., Lu, J. L., Chen, T. Z., Yang, S. Z., Wang, Y. J., Erni, R., Rossell, M. D., Gopalan, V., Xiang, H. J., Tokura, Y., and Yu, P. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films. United States: N. p., 2018. Web. doi:10.1103/physrevb.97.235135.
Guo, J. W., Wang, P. S., Yuan, Y., He, Q., Lu, J. L., Chen, T. Z., Yang, S. Z., Wang, Y. J., Erni, R., Rossell, M. D., Gopalan, V., Xiang, H. J., Tokura, Y., & Yu, P. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films. United States. doi:10.1103/physrevb.97.235135.
Guo, J. W., Wang, P. S., Yuan, Y., He, Q., Lu, J. L., Chen, T. Z., Yang, S. Z., Wang, Y. J., Erni, R., Rossell, M. D., Gopalan, V., Xiang, H. J., Tokura, Y., and Yu, P. Wed . "Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films". United States. doi:10.1103/physrevb.97.235135. https://www.osti.gov/servlets/purl/1511828.
@article{osti_1511828,
title = {Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films},
author = {Guo, J. W. and Wang, P. S. and Yuan, Y. and He, Q. and Lu, J. L. and Chen, T. Z. and Yang, S. Z. and Wang, Y. J. and Erni, R. and Rossell, M. D. and Gopalan, V. and Xiang, H. J. and Tokura, Y. and Yu, P.},
abstractNote = {Designing novel multiferroic materials with simultaneous ferroelectric and magnetic orders has been one of the focal points over the last decade due to the promising applications and rich physics involved. In this study, using epitaxial strain (up to 3.8%) as tuning knob, we successfully introduce multiferroicity with prominent high-temperature ferroelectricity into the paraelectric SrMnO3.More interestingly, the experimental temperature-dependent ferroelectric and magnetic studies suggest that the emergent antiferromagnetic order below 100 K greatly enhances the ferroelectric polarization due to the spin-order-induced ionic displacements. We envision that the strain-mediated spin-phonon coupling can be utilized as a pathway to discover functionalities in a wide range of antiferromagnetic insulators with delicate epitaxial manipulations.},
doi = {10.1103/physrevb.97.235135},
journal = {Physical Review B},
number = 23,
volume = 97,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Multiferroics progress and prospects in thin films
journal, January 2007

  • Ramesh, R.; Spaldin, Nicola A.
  • Nature Materials, Vol. 6, Issue 1, p. 21-29
  • DOI: 10.1038/nmat1805