skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genetic algorithms for computational materials discovery accelerated by machine learning

Abstract

Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.

Authors:
 [1]; ORCiD logo [2];  [3]; ORCiD logo [2];  [1]
  1. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  2. Technical Univ. of Denmark, Lyngby (Denmark)
  3. Toyota Research Institute, Los Altos, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1511649
Grant/Contract Number:  
AC02-76SF0051
Resource Type:
Accepted Manuscript
Journal Name:
npj Computational Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2057-3960
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Jennings, Paul C., Lysgaard, Steen, Hummelshøj, Jens Strabo, Vegge, Tejs, and Bligaard, Thomas. Genetic algorithms for computational materials discovery accelerated by machine learning. United States: N. p., 2019. Web. doi:10.1038/s41524-019-0181-4.
Jennings, Paul C., Lysgaard, Steen, Hummelshøj, Jens Strabo, Vegge, Tejs, & Bligaard, Thomas. Genetic algorithms for computational materials discovery accelerated by machine learning. United States. doi:10.1038/s41524-019-0181-4.
Jennings, Paul C., Lysgaard, Steen, Hummelshøj, Jens Strabo, Vegge, Tejs, and Bligaard, Thomas. Wed . "Genetic algorithms for computational materials discovery accelerated by machine learning". United States. doi:10.1038/s41524-019-0181-4. https://www.osti.gov/servlets/purl/1511649.
@article{osti_1511649,
title = {Genetic algorithms for computational materials discovery accelerated by machine learning},
author = {Jennings, Paul C. and Lysgaard, Steen and Hummelshøj, Jens Strabo and Vegge, Tejs and Bligaard, Thomas},
abstractNote = {Materials discovery is increasingly being impelled by machine learning methods that rely on pre-existing datasets. Where datasets are lacking, unbiased data generation can be achieved with genetic algorithms. Here a machine learning model is trained on-the-fly as a computationally inexpensive energy predictor before analyzing how to augment convergence in genetic algorithm-based approaches by using the model as a surrogate. This leads to a machine learning accelerated genetic algorithm combining robust qualities of the genetic algorithm with rapid machine learning. The approach is used to search for stable, compositionally variant, geometrically similar nanoparticle alloys to illustrate its capability for accelerated materials discovery, e.g., nanoalloy catalysts. The machine learning accelerated approach, in this case, yields a 50-fold reduction in the number of required energy calculations compared to a traditional “brute force” genetic algorithm. This makes searching through the space of all homotops and compositions of a binary alloy particle in a given structure feasible, using density functional theory calculations.},
doi = {10.1038/s41524-019-0181-4},
journal = {npj Computational Materials},
number = 1,
volume = 5,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: The homotop optimization problem for the 147 Mackay icosahedral nanoparticle. a shows the number of homotops as a function of composition. b is a randomly ordered PtAu 147 atom icosahedron

Save / Share:

Works referenced in this record:

Structural motifs, mixing, and segregation effects in 38-atom binary clusters
journal, April 2008

  • Paz-Borbón, Lauro Oliver; Johnston, Roy L.; Barcaro, Giovanni
  • The Journal of Chemical Physics, Vol. 128, Issue 13
  • DOI: 10.1063/1.2897435

Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts
journal, October 2013


Global optimization of clusters using electronic structure methods
journal, May 2013

  • Heiles, Sven; Johnston, Roy L.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24462

Lattice relaxation at a metal surface
journal, June 1981


Amp: A modular approach to machine learning in atomistic simulations
journal, October 2016


Localized atomic basis set in the projector augmented wave method
journal, November 2009


Influence of the composition of core–shell Au–Pt nanoparticle electrocatalysts for the oxygen reduction reaction
journal, April 2010


Structural Relaxation Made Simple
journal, October 2006


Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Exploration versus Exploitation in Global Atomistic Structure Optimization
journal, January 2018

  • Jørgensen, Mathias S.; Larsen, Uffe F.; Jacobsen, Karsten W.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 5
  • DOI: 10.1021/acs.jpca.8b00160

Dopant-induced 2D–3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au–Ag nanoalloys
journal, January 2012

  • Heiles, Sven; Logsdail, Andrew J.; Schäfer, Rolf
  • Nanoscale, Vol. 4, Issue 4
  • DOI: 10.1039/C1NR11053E

Combined Electronic Structure and Evolutionary Search Approach to Materials Design
journal, June 2002


Interplay of Electronic Structure and Atomic Mobility in Nanoalloys of Au and Pt
journal, August 2013

  • Leppert, L.; Albuquerque, R. Q.; Foster, A. S.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 33
  • DOI: 10.1021/jp404341v

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

Fitness sharing and niching methods revisited
journal, January 1998

  • Sareni, B.; Krahenbuhl, L.
  • IEEE Transactions on Evolutionary Computation, Vol. 2, Issue 3
  • DOI: 10.1109/4235.735432

Structures and Stabilities of Platinum–Gold Nanoclusters
journal, April 2009

  • Logsdail, Andrew; Paz-Borbón, Lauro Oliver; Johnston, Roy L.
  • Journal of Computational and Theoretical Nanoscience, Vol. 6, Issue 4
  • DOI: 10.1166/jctn.2009.1118

Controlling Structural Transitions in AuAg Nanoparticles through Precise Compositional Design
journal, October 2016

  • Gould, Anna L.; Rossi, Kevin; Catlow, C. Richard A.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 21
  • DOI: 10.1021/acs.jpclett.6b02181

Interatomic interactions in the effective-medium theory
journal, May 1987


Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
journal, March 1999


Steps on rutile TiO 2 (110): Active sites for water and methanol dissociation
journal, November 2011

  • Martinez, Umberto; Vilhelmsen, Lasse B.; Kristoffersen, Henrik H.
  • Physical Review B, Vol. 84, Issue 20
  • DOI: 10.1103/PhysRevB.84.205434

Octahedral PtNi Nanoparticle Catalysts Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition
journal, October 2012

  • Cui, Chunhua; Gan, Lin; Li, Hui-Hui
  • Nano Letters, Vol. 12, Issue 11, p. 5885-5889
  • DOI: 10.1021/nl3032795

Competition between structural motifs in gold–platinum nanoalloys
journal, October 2013


Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Symmetry breaking and morphological instabilities in core-shell metallic nanoparticles
journal, December 2014


Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method
journal, June 2010


Optical absorption spectra and structures of Ag 6 + and Ag 8 +
journal, June 2015


Molecular Geometry Optimization with a Genetic Algorithm
journal, July 1995


Potential energy functions for atomic solids
journal, February 1990


A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO 2 reduction
journal, January 2015

  • Lysgaard, Steen; Mýrdal, Jón S. G.; Hansen, Heine A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 42
  • DOI: 10.1039/C5CP00298B

Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
journal, May 2018


Long-range Finnis–Sinclair potentials
journal, March 1990


Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn
journal, January 2017

  • Patra, Tarak K.; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang
  • ACS Combinatorial Science, Vol. 19, Issue 2
  • DOI: 10.1021/acscombsci.6b00136

Optimizing core-shell nanoparticle catalysts with a genetic algorithm
journal, December 2009

  • Froemming, Nathan S.; Henkelman, Graeme
  • The Journal of Chemical Physics, Vol. 131, Issue 23
  • DOI: 10.1063/1.3272274

Structures of small Ti- and V-doped Pt clusters: A GA-DFT study
journal, October 2013


An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
journal, March 2016


A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters
journal, February 2013


Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters
journal, October 1981


Nanoalloys:  From Theory to Applications of Alloy Clusters and Nanoparticles
journal, March 2008

  • Ferrando, Riccardo; Jellinek, Julius; Johnston, Roy L.
  • Chemical Reviews, Vol. 108, Issue 3, p. 845-910
  • DOI: 10.1021/cr040090g

Amorphization Mechanism of Icosahedral Metal Nanoclusters
journal, August 2004


SchNetPack: A Deep Learning Toolbox For Atomistic Systems
journal, November 2018

  • Schütt, K. T.; Kessel, P.; Gastegger, M.
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00908

The Birmingham parallel genetic algorithm and its application to the direct DFT global optimisation of Ir N (N = 10–20) clusters
journal, January 2015

  • Davis, Jack B. A.; Shayeghi, Armin; Horswell, Sarah L.
  • Nanoscale, Vol. 7, Issue 33
  • DOI: 10.1039/C5NR03774C

Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries
journal, January 2003


Systematic Study of Au 6 to Au 12 Gold Clusters on MgO(100) F Centers Using Density-Functional Theory
journal, March 2012


Structural evolution of Pt–Au nanoalloys during heating process: comparison of random and core-shell orderings
journal, January 2009

  • Yang, Zhen; Yang, Xiaoning; Xu, Zhijun
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 29
  • DOI: 10.1039/b821328c

    Works referencing / citing this record:

    Identification of stable adsorption sites and diffusion paths on nanocluster surfaces: an automated scanning algorithm
    journal, October 2019

    • Szilvási, Tibor; Chen, Benjamin W. J.; Mavrikakis, Manos
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0240-x

    Identification of stable adsorption sites and diffusion paths on nanocluster surfaces: an automated scanning algorithm
    journal, October 2019

    • Szilvási, Tibor; Chen, Benjamin W. J.; Mavrikakis, Manos
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0240-x

    Computational discovery of molecular C60 encapsulants with an evolutionary algorithm
    journal, January 2020

    • Miklitz, Marcin; Turcani, Lukas; Greenaway, Rebecca L.
    • Communications Chemistry, Vol. 3, Issue 1
    • DOI: 10.1038/s42004-020-0255-8

    Machine learning for interatomic potential models
    journal, February 2020

    • Mueller, Tim; Hernandez, Alberto; Wang, Chuhong
    • The Journal of Chemical Physics, Vol. 152, Issue 5
    • DOI: 10.1063/1.5126336

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.