skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Process Intensification in Multicomponent Distillation: A Review of Recent Advancements

Abstract

Process Intensification (PI) is an emerging concept in chemical engineering that describes the design innovations that lead to significant shrinkage in size and boost in efficiency of a process plant. Distillation, the most commonly used separation technique in the chemical industry, is a crucial component of PI. We systematically discuss the following aspects of PI in non-azeotropic multicomponent distillation: 1) Introducing thermal couplings to eliminate intermediate reboilers and condensers to save energy and capital cost; 2) Improving operability of thermally coupled columns by means of eliminating vapor streams in thermal couplings with only liquid transfers or column section rearrangement; 3) Enabling double and multi-effect distillation of thermally coupled configurations to further reduce heat duty; 4) Performing simultaneous heat and mass integration among thermally coupled columns to reduce the number of columns and heat duty; and 5) Conducting any thermally coupled distillation in n-product streams using 1 to n - 2 column shells with operable novel dividing wall columns. We demonstrate these aspects of PI through examples to illustrate how they lead to compact, easy-to-operate, energy efficient and cost effective multicomponent distillation system designs.

Authors:
 [1];  [1]
  1. Purdue Univ., West Lafayette, IN (United States). Davidson School of Chemical Engineering
Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office
OSTI Identifier:
1511532
Alternate Identifier(s):
OSTI ID: 1777614
Grant/Contract Number:  
EE0005768
Resource Type:
Accepted Manuscript
Journal Name:
Chemical Engineering Research and Design
Additional Journal Information:
Journal Volume: 147; Journal ID: ISSN 0263-8762
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; process intensification; multicomponent distillation; separation

Citation Formats

Jiang, Zheyu, and Agrawal, Rakesh. Process Intensification in Multicomponent Distillation: A Review of Recent Advancements. United States: N. p., 2019. Web. https://doi.org/10.1016/j.cherd.2019.04.023.
Jiang, Zheyu, & Agrawal, Rakesh. Process Intensification in Multicomponent Distillation: A Review of Recent Advancements. United States. https://doi.org/10.1016/j.cherd.2019.04.023
Jiang, Zheyu, and Agrawal, Rakesh. Mon . "Process Intensification in Multicomponent Distillation: A Review of Recent Advancements". United States. https://doi.org/10.1016/j.cherd.2019.04.023. https://www.osti.gov/servlets/purl/1511532.
@article{osti_1511532,
title = {Process Intensification in Multicomponent Distillation: A Review of Recent Advancements},
author = {Jiang, Zheyu and Agrawal, Rakesh},
abstractNote = {Process Intensification (PI) is an emerging concept in chemical engineering that describes the design innovations that lead to significant shrinkage in size and boost in efficiency of a process plant. Distillation, the most commonly used separation technique in the chemical industry, is a crucial component of PI. We systematically discuss the following aspects of PI in non-azeotropic multicomponent distillation: 1) Introducing thermal couplings to eliminate intermediate reboilers and condensers to save energy and capital cost; 2) Improving operability of thermally coupled columns by means of eliminating vapor streams in thermal couplings with only liquid transfers or column section rearrangement; 3) Enabling double and multi-effect distillation of thermally coupled configurations to further reduce heat duty; 4) Performing simultaneous heat and mass integration among thermally coupled columns to reduce the number of columns and heat duty; and 5) Conducting any thermally coupled distillation in n-product streams using 1 to n - 2 column shells with operable novel dividing wall columns. We demonstrate these aspects of PI through examples to illustrate how they lead to compact, easy-to-operate, energy efficient and cost effective multicomponent distillation system designs.},
doi = {10.1016/j.cherd.2019.04.023},
journal = {Chemical Engineering Research and Design},
number = ,
volume = 147,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Operation and Control of Dividing Wall Distillation Columns
journal, March 1998

  • Mutalib, M. I. Abdul; Smith, R.
  • Chemical Engineering Research and Design, Vol. 76, Issue 3
  • DOI: 10.1205/026387698524956

Model predictive control of integrated unit operations: Control of a divided wall column
journal, March 2004

  • Adrian, Till; Schoenmakers, Hartmut; Boll, Marco
  • Chemical Engineering and Processing: Process Intensification, Vol. 43, Issue 3
  • DOI: 10.1016/S0255-2701(03)00114-4

Synthesis of Distillation Column Configurations for a Multicomponent Separation
journal, January 1996

  • Agrawal, Rakesh
  • Industrial & Engineering Chemistry Research, Vol. 35, Issue 4
  • DOI: 10.1021/ie950323h

More Operable Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation
journal, September 1999


Multieffect distillation for thermally coupled configurations
journal, November 2000


Thermally coupled distillation with reduced number of intercolumn vapor transfers
journal, November 2000


Multicomponent Distillation Columns with Partitions and Multiple Reboilers and Condensers
journal, October 2001

  • Agrawal, Rakesh
  • Industrial & Engineering Chemistry Research, Vol. 40, Issue 20
  • DOI: 10.1021/ie000315n

Synthesis of multicomponent distillation column configurations
journal, February 2003


Are Thermally Coupled Distillation Columns Always Thermodynamically More Efficient for Ternary Distillations?
journal, August 1998

  • Agrawal, Rakesh; Fidkowski, Zbigniew T.
  • Industrial & Engineering Chemistry Research, Vol. 37, Issue 8
  • DOI: 10.1021/ie980062m

More operable arrangements of fully thermally coupled distillation columns
journal, November 1998


New thermally coupled schemes for ternary distillation
journal, March 1999


Heat Pumps for Thermally Linked Distillation Columns: An Exercise for Argon Production from Air
journal, November 1994

  • Agrawal, Rakesh; Yee, Terrence F.
  • Industrial & Engineering Chemistry Research, Vol. 33, Issue 11
  • DOI: 10.1021/ie00035a023

Design and Optimization of Fully Thermally Coupled Distillation Columns
journal, October 2001

  • Amminudin, K. A.; Smith, R.; Thong, D. Y. -C.
  • Chemical Engineering Research and Design, Vol. 79, Issue 7
  • DOI: 10.1205/026387601753192028

Simultaneous design and control optimisation under uncertainty
journal, July 2000


A Case Study in Simultaneous Design and Control Using Rigorous, Mixed-Integer Dynamic Optimization Models
journal, February 2002

  • Bansal, Vikrant; Perkins, John D.; Pistikopoulos, Efstratios N.
  • Industrial & Engineering Chemistry Research, Vol. 41, Issue 4
  • DOI: 10.1021/ie010156n

Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns
journal, May 2001

  • Caballero, José A.; Grossmann, Ignacio E.
  • Industrial & Engineering Chemistry Research, Vol. 40, Issue 10
  • DOI: 10.1021/ie000761a

Thermodynamically equivalent configurations for thermally coupled distillation
journal, November 2003


Design of distillation sequences: from conventional to fully thermally coupled distillation systems
journal, October 2004


Structural Considerations and Modeling in the Synthesis of Heat-Integrated−Thermally Coupled Distillation Sequences
journal, December 2006

  • Caballero, José A.; Grossmann, Ignacio E.
  • Industrial & Engineering Chemistry Research, Vol. 45, Issue 25
  • DOI: 10.1021/ie060030w

Synthesis of complex thermally coupled distillation systems including divided wall columns
journal, September 2012

  • Caballero, José A.; Grossmann, Ignacio E.
  • AIChE Journal, Vol. 59, Issue 4
  • DOI: 10.1002/aic.13912

Temperature-heat diagrams for complex columns. 2. Underwood's method for side strippers and enrichers
journal, September 1989

  • Carlberg, Neil A.; Westerberg, Arthur W.
  • Industrial & Engineering Chemistry Research, Vol. 28, Issue 9
  • DOI: 10.1021/ie00093a017

Heat-integrated distillation columns for ternary separations
journal, July 1985

  • Cheng, Hao Chieh; Luyben, William L.
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 24, Issue 3
  • DOI: 10.1021/i200030a031

Complex distillation arrangements: Extending the petlyuk ideas
journal, May 1997


Dividing wall column—A breakthrough towards sustainable distilling
journal, June 2010

  • Dejanović, I.; Matijašević, Lj.; Olujić, Ž.
  • Chemical Engineering and Processing: Process Intensification, Vol. 49, Issue 6
  • DOI: 10.1016/j.cep.2010.04.001

Control of a heat-integrated complex distillation configuration
journal, July 1990

  • Ding, Samuel S.; Luyben, William L.
  • Industrial & Engineering Chemistry Research, Vol. 29, Issue 7
  • DOI: 10.1021/ie00103a024

Active Vapor Split Control for Dividing-Wall Columns
journal, November 2012

  • Dwivedi, Deeptanshu; Strandberg, Jens P.; Halvorsen, Ivar J.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 46
  • DOI: 10.1021/ie3014346

Rigorous simulation of energy integrated and thermally coupled distillation schemes for ternary mixture
journal, October 2001


Minimum energy diagrams for multieffect distillation arrangements
journal, January 2005

  • Engelien, Hilde K.; Skogestad, Sigurd
  • AIChE Journal, Vol. 51, Issue 6
  • DOI: 10.1002/aic.10453

Thermally coupled system of distillation columns: Optimization procedure
journal, April 1986


Minimum energy requirements of thermally coupled distillation systems
journal, April 1987

  • Fidkowski, Zbigniew; Królikowski, LechosłW
  • AIChE Journal, Vol. 33, Issue 4
  • DOI: 10.1002/aic.690330412

Distillation configurations and their energy requirements
journal, June 2006


Multicomponent thermally coupled systems of distillation columns at minimum reflux
journal, December 2001


Thermodynamic Analysis of Thermally Coupled Distillation Sequences
journal, November 2003

  • Flores, Olga A.; Cárdenas, J. Carlos; Hernández, Salvador
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 23
  • DOI: 10.1021/ie034011n

Synthesis of distillation configurations: I. Characteristics of a good search space
journal, January 2010


Synthesis of distillation configurations. II: A search formulation for basic configurations
journal, January 2010


Minimum vapor flows in a distillation column with a sidestream stripper
journal, October 1985

  • Glinos, Konstantinos; Malone, Michael F.
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 24, Issue 4
  • DOI: 10.1021/i200031a032

New complex column arrangements for ideal distillation
journal, July 1986

  • Glinos, Konstantinos N.; Nikolaides, Ioannis P.; Malone, Michael F.
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 25, Issue 3
  • DOI: 10.1021/i200034a016

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements
journal, February 2003

  • Halvorsen, Ivar J.; Skogestad, Sigurd
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 3
  • DOI: 10.1021/ie0108651

Energy efficient distillation
journal, September 2011

  • Halvorsen, Ivar J.; Skogestad, Sigurd
  • Journal of Natural Gas Science and Engineering, Vol. 3, Issue 4
  • DOI: 10.1016/j.jngse.2011.06.002

Energy Efficiency of an Indirect Thermally Coupled Distillation Sequence
journal, October 2003

  • Hernández, Salvador; Pereira-Pech, Salvador; Jiménez, Arturo
  • The Canadian Journal of Chemical Engineering, Vol. 81, Issue 5
  • DOI: 10.1002/cjce.5450810522

Synthesis of Distillation Column Sequences for Nonsharp Separations
journal, September 2009

  • Ivakpour, Javad; Kasiri, Norollah
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 18
  • DOI: 10.1021/ie802013r

Minimum energy of multicomponent distillation systems using minimum additional heat and mass integration sections
journal, May 2018

  • Jiang, Zheyu; Madenoor Ramapriya, Gautham; Tawarmalani, Mohit
  • AIChE Journal, Vol. 64, Issue 9
  • DOI: 10.1002/aic.16189

Global optimization of multicomponent distillation configurations: Global minimization of total cost for multicomponent mixture separations
journal, July 2019


Distillation columns with vertical partitions
journal, January 1987


Trennwandkolonnen: Entwicklungsstand und Perspektiven
journal, September 2006

  • Kenig, E.; Müller, I.; Großmann, C.
  • Chemie Ingenieur Technik, Vol. 78, Issue 9
  • DOI: 10.1002/cite.200650379

Novel distillation concepts using one-shell columns
journal, March 2004

  • Kolbe, Bärbel; Wenzel, Sascha
  • Chemical Engineering and Processing: Process Intensification, Vol. 43, Issue 3
  • DOI: 10.1016/S0255-2701(03)00133-8

Integrated crude distillation design
journal, June 1995


Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations
journal, May 2018

  • Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo
  • Industrial & Engineering Chemistry Research, Vol. 57, Issue 22
  • DOI: 10.1021/acs.iecr.7b05214

A New Framework for Combining a Condenser and Reboiler in a Configuration To Consolidate Distillation Columns
journal, July 2015

  • Madenoor Ramapriya, Gautham; Shenvi, Anirudh A.; Tawarmalani, Mohit
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 42
  • DOI: 10.1021/acs.iecr.5b01701

Thermal coupling links to liquid-only transfer streams: A path for new dividing wall columns
journal, April 2014

  • Madenoor Ramapriya, Gautham; Tawarmalani, Mohit; Agrawal, Rakesh
  • AIChE Journal, Vol. 60, Issue 8
  • DOI: 10.1002/aic.14468

Thermal coupling links to liquid-only transfer streams: An enumeration method for new FTC dividing wall columns
journal, November 2015

  • Ramapriya, Gautham Madenoor; Tawarmalani, Mohit; Agrawal, Rakesh
  • AIChE Journal, Vol. 62, Issue 4
  • DOI: 10.1002/aic.15053

A systematic method to synthesize all dividing wall columns for n -component separation-Part I
journal, September 2017

  • Madenoor Ramapriya, Gautham; Tawarmalani, Mohit; Agrawal, Rakesh
  • AIChE Journal, Vol. 64, Issue 2
  • DOI: 10.1002/aic.15964

A systematic method to synthesize all dividing wall columns for n -component separation: Part II
journal, September 2017

  • Madenoor Ramapriya, Gautham; Tawarmalani, Mohit; Agrawal, Rakesh
  • AIChE Journal, Vol. 64, Issue 2
  • DOI: 10.1002/aic.15963

Process control for energy integrated distillation schemes
journal, March 1998


Optimal design of dynamic systems under uncertainty
journal, August 1996

  • Mohideen, M. Jezri; Perkins, John D.; Pistikopoulos, Efstratios N.
  • AIChE Journal, Vol. 42, Issue 8
  • DOI: 10.1002/aic.690420814

Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm
journal, February 2016

  • Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.
  • AIChE Journal, Vol. 62, Issue 6
  • DOI: 10.1002/aic.15204

Global optimization of multicomponent distillation configurations: 1. Need for a reliable global optimization algorithm
journal, July 2012

  • Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.
  • AIChE Journal, Vol. 59, Issue 3
  • DOI: 10.1002/aic.13875

Equipment improvement trends in distillation
journal, June 2009

  • Olujić, Ž.; Jödecke, M.; Shilkin, A.
  • Chemical Engineering and Processing: Process Intensification, Vol. 48, Issue 6
  • DOI: 10.1016/j.cep.2009.03.004

Process intensification: New understanding and systematic approach
journal, March 2012

  • Ponce-Ortega, José María; Al-Thubaiti, Musaed M.; El-Halwagi, Mahmoud M.
  • Chemical Engineering and Processing: Process Intensification, Vol. 53
  • DOI: 10.1016/j.cep.2011.12.010

Energy savings of integrated and coupled distillation systems
journal, January 2001


Simultaneous Design and Control: A New Approach and Comparisons with Existing Methodologies
journal, February 2010

  • Ricardez-Sandoval, Luis A.; Budman, Hector M.; Douglas, Peter L.
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 6
  • DOI: 10.1021/ie9010707

Synthesis of Heat-Integrated Thermally Coupled Distillation Systems for Multicomponent Separations
journal, September 2003

  • Rong, Ben-Guang; Kraslawski, Andrzej; Turunen, Ilkka
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 19
  • DOI: 10.1021/ie030302k

A generalized dynamic model for distillation columns—III. Study of startup operations
journal, January 1988


Recent advances in optimization-based simultaneous process and control design
journal, September 2004


Simultaneous process synthesis and control design under uncertainty: A worst-case performance approach
journal, April 2013

  • Sánchez-Sánchez, Kelvyn; Ricardez-Sandoval, Luis
  • AIChE Journal, Vol. 59, Issue 7
  • DOI: 10.1002/aic.14040

Controllability of Different Multicomponent Distillation Arrangements
journal, March 2003

  • Serra, Maria; Espuña, Antonio; Puigjaner, Lluís
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 8
  • DOI: 10.1021/ie010609o

Study of the divided wall column controllability: influence of design and operation
journal, July 2000


A matrix method for multicomponent distillation sequences
journal, November 2009

  • Shah, Vishesh H.; Agrawal, Rakesh
  • AIChE Journal, Vol. 56, Issue 7
  • DOI: 10.1002/aic.12118

Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?
journal, February 2011

  • Shah, Vishesh H.; Agrawal, Rakesh
  • Industrial & Engineering Chemistry Research, Vol. 50, Issue 3
  • DOI: 10.1021/ie101768c

New multicomponent distillation configurations with simultaneous heat and mass integration
journal, December 2012

  • Shenvi, Anirudh A.; Shah, Vishesh H.; Agrawal, Rakesh
  • AIChE Journal, Vol. 59, Issue 1
  • DOI: 10.1002/aic.13971

Seven chemical separations to change the world
journal, April 2016

  • Sholl, David S.; Lively, Ryan P.
  • Nature, Vol. 532, Issue 7600
  • DOI: 10.1038/532435a

Dynamics and Control of Distillation Columns
journal, September 1997


Dividing wall column for industrial multi purpose use
journal, January 2014

  • Staak, Daniel; Grützner, Thomas; Schwegler, Brian
  • Chemical Engineering and Processing: Process Intensification, Vol. 75
  • DOI: 10.1016/j.cep.2013.10.007

A polyhedral branch-and-cut approach to global optimization
journal, May 2005


Systematic synthesis of separation schemes
journal, September 1972


Optimal process and control design under uncertainty: A methodology with robust feasibility and stability analyses
journal, December 2013


Fractional Distillation of Multicomponent Mixtures
journal, December 1949

  • Underwood, A. J. V.
  • Industrial & Engineering Chemistry, Vol. 41, Issue 12
  • DOI: 10.1021/ie50480a044

Structure, Energy, Synergy, TimeThe Fundamentals of Process Intensification
journal, March 2009

  • Van Gerven, Tom; Stankiewicz, Andrzej
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 5
  • DOI: 10.1021/ie801501y

Multieffect distillation processes
journal, May 1993

  • Wankat, Phillip C.
  • Industrial & Engineering Chemistry Research, Vol. 32, Issue 5
  • DOI: 10.1021/ie00017a017

Operation of Integrated Three-Product (Petlyuk) Distillation Columns
journal, June 1995

  • Wolff, Erik A.; Skogestad, Sigurd
  • Industrial & Engineering Chemistry Research, Vol. 34, Issue 6
  • DOI: 10.1021/ie00045a018

    Works referencing / citing this record:

    Global minimization of total exergy loss of multicomponent distillation configurations
    journal, August 2019

    • Jiang, Zheyu; Chen, Zewei; Huff, Joshua
    • AIChE Journal, Vol. 65, Issue 11
    • DOI: 10.1002/aic.16737