DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental study of energy transfer in double shell implosions

Abstract

Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and themore » inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1] more »; ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2];  [2] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1532713
Alternate Identifier(s):
OSTI ID: 1511524; OSTI ID: 1880963
Report Number(s):
LA-UR-18-31785; LLNL-JRNL-835453
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
89233218CNA000001; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 5; Conference: 60.Annual Meeting of the APS Division of Plasma Physics, Portland, OR (United States), 5-9 Nov 2018; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Double Shells; Radiation trapping

Citation Formats

Merritt, Elizabeth Catherine, Sauppe, Joshua Paul, Loomis, Eric Nicholas, Cardenas, Tana, Montgomery, David S., Daughton, William Scott, Wilson, Douglas Carl, Kline, John L., Khan, Shahab F., Schoff, Mike, Hoppe, Martin, Fierro, Franklin, Randolph, Randall Blaine, Patterson, Brian M., Kuettner, Lindsey Ann, Sacks, Ryan Foster, Dodd, Evan S., Wan, Willow Chilim, Palaniyappan, Sasikumar, Batha, Steven H., Keiter, Paul Arthur, Rygg, J. Ryan, Smalyuk, Vladimir, Ping, Yuan, and Amendt, Peter. Experimental study of energy transfer in double shell implosions. United States: N. p., 2019. Web. doi:10.1063/1.5086674.
Merritt, Elizabeth Catherine, Sauppe, Joshua Paul, Loomis, Eric Nicholas, Cardenas, Tana, Montgomery, David S., Daughton, William Scott, Wilson, Douglas Carl, Kline, John L., Khan, Shahab F., Schoff, Mike, Hoppe, Martin, Fierro, Franklin, Randolph, Randall Blaine, Patterson, Brian M., Kuettner, Lindsey Ann, Sacks, Ryan Foster, Dodd, Evan S., Wan, Willow Chilim, Palaniyappan, Sasikumar, Batha, Steven H., Keiter, Paul Arthur, Rygg, J. Ryan, Smalyuk, Vladimir, Ping, Yuan, & Amendt, Peter. Experimental study of energy transfer in double shell implosions. United States. https://doi.org/10.1063/1.5086674
Merritt, Elizabeth Catherine, Sauppe, Joshua Paul, Loomis, Eric Nicholas, Cardenas, Tana, Montgomery, David S., Daughton, William Scott, Wilson, Douglas Carl, Kline, John L., Khan, Shahab F., Schoff, Mike, Hoppe, Martin, Fierro, Franklin, Randolph, Randall Blaine, Patterson, Brian M., Kuettner, Lindsey Ann, Sacks, Ryan Foster, Dodd, Evan S., Wan, Willow Chilim, Palaniyappan, Sasikumar, Batha, Steven H., Keiter, Paul Arthur, Rygg, J. Ryan, Smalyuk, Vladimir, Ping, Yuan, and Amendt, Peter. Wed . "Experimental study of energy transfer in double shell implosions". United States. https://doi.org/10.1063/1.5086674. https://www.osti.gov/servlets/purl/1532713.
@article{osti_1532713,
title = {Experimental study of energy transfer in double shell implosions},
author = {Merritt, Elizabeth Catherine and Sauppe, Joshua Paul and Loomis, Eric Nicholas and Cardenas, Tana and Montgomery, David S. and Daughton, William Scott and Wilson, Douglas Carl and Kline, John L. and Khan, Shahab F. and Schoff, Mike and Hoppe, Martin and Fierro, Franklin and Randolph, Randall Blaine and Patterson, Brian M. and Kuettner, Lindsey Ann and Sacks, Ryan Foster and Dodd, Evan S. and Wan, Willow Chilim and Palaniyappan, Sasikumar and Batha, Steven H. and Keiter, Paul Arthur and Rygg, J. Ryan and Smalyuk, Vladimir and Ping, Yuan and Amendt, Peter},
abstractNote = {Advances in target fabrication have made double shell capsule implosions a viable platform to study burning fusion plasmas. Central to the double shell capsule is a high-Z (e.g., Au) metal pusher that accesses the volume-burn regime by reducing radiative losses through radiation trapping and compressing a uniform fuel volume at reduced velocities. A double shell implosion relies on a series of energy transfer processes starting from x-ray absorption by the outer shell, followed by transfer of kinetic energy to an inner shell, and finally conversion of kinetic energy to fuel internal energy. We present simulation and experimental results on momentum transfer to different layers in a double shell. We also present the details of the development of the NIF cylindrical hohlraum double shell platform including an imaging shell design with a mid-Z inner shell necessary for imaging the inner shell shape and the trajectory with the current 2DConA platform capability. We examine 1D energy transfer between shell layers using trajectory measurements from a series of surrogate targets; the series builds to a complete double shell layer by layer, isolating the physics of each step of the energy transfer process. Here, the measured energy transfer to the foam cushion and the inner shell suggests that our radiation-hydrodynamics simulations capture most of the relevant collision physics. With a 1 MJ laser drive, the experimental data indicate that 22% ± 3% of the ablator kinetic energy couples into inner shell KE, compared to a 27% ± 2% coupling in our xRAGE simulations. Thus, our xRAGE simulations match experimental energy transfer to ~5%, without inclusion of higher order 2D and 3D effects.},
doi = {10.1063/1.5086674},
journal = {Physics of Plasmas},
number = 5,
volume = 26,
place = {United States},
year = {Wed May 08 00:00:00 EDT 2019},
month = {Wed May 08 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

X-ray area backlighter development at the National Ignition Facility (invited)
journal, November 2014

  • Barrios, M. A.; Regan, S. P.; Fournier, K. B.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4891713

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies
journal, May 2003

  • Moses, Edward I.; Wuest, Craig R.
  • Fusion Science and Technology, Vol. 43, Issue 3
  • DOI: 10.13182/FST43-420

High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility
journal, March 2017

  • Chen, Hui; Hermann, M. R.; Kalantar, D. H.
  • Physics of Plasmas, Vol. 24, Issue 3
  • DOI: 10.1063/1.4978493

Backlighter development at the National Ignition Facility (NIF): Zinc to zirconium
journal, September 2013


Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs
journal, April 2004

  • Milovich, J. L.; Amendt, P.; Marinak, M.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1646161

The first measurements of soft x-ray flux from ignition scale Hohlraums at the National Ignition Facility using DANTE (invited)
journal, October 2010

  • Kline, J. L.; Widmann, K.; Warrick, A.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491032

Direct drive double shell target implosion hydrodynamics on OMEGA
journal, June 2005

  • Kyrala, George A.; Delamater, Norman; Wilson, Douglas
  • Laser and Particle Beams, Vol. 23, Issue 2
  • DOI: 10.1017/S0263034605050330

Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Symmetry control in subscale near-vacuum hohlraums
journal, May 2016

  • Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950825

Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)
journal, October 2010

  • Kyrala, G. A.; Dixit, S.; Glenzer, S.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3481028

Design considerations for indirectly driven double shell capsules
journal, September 2018

  • Montgomery, D. S.; Daughton, W. S.; Albright, B. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5042478

Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

The RAGE radiation-hydrodynamic code
journal, October 2008


Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility
journal, January 2018


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Enhanced energy coupling for indirectly driven inertial confinement fusion
journal, October 2018


Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Progress on converting a NIF quad to eight, petawatt beams for advanced radiography
journal, August 2010


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Works referencing / citing this record:

First experiments on Revolver shell collisions at the OMEGA laser
journal, July 2019

  • Scheiner, Brett; Schmitt, Mark J.; Hsu, Scott C.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5099975

Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
journal, August 2019

  • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5088745

Computational study of instability and fill tube mitigation strategies for double shell implosions
journal, October 2019

  • Haines, Brian M.; Daughton, W. S.; Loomis, E. N.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5115031

First experiments on Revolver shell collisions at the OMEGA Laser
text, January 2019