1" />
skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 1"" class="biblio-detail-author-link"> « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Nuclear Physics (NP)
Contributing Org.:
MicroBooNE Collaboration 1; MicroBooNE Collaboration
OSTI Identifier:
1511498
Alternate Identifier(s):
OSTI ID: 1468407; OSTI ID: 1514380; OSTI ID: 1529985; OSTI ID: 1638589
Report Number(s):
arXiv:1808.07269; FERMILAB-PUB-18-231-ND; BNL-211676-2019-JAAM; PNNL-SA-137800
Journal ID: ISSN 2470-0010; PRVDAQ; 092001
Grant/Contract Number:  
AC02-07CH11359; SC0007859; SC0012704; AC05-76RL01830
Resource Type:
Published Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Name: Physical Review D Journal Volume: 99 Journal Issue: 9; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; CNNs; pixel labeling; semantic segmentation; deep learning algorithms; particle interactions; artificial neural networks; machine learning; neutrino detectors; CNNs, pixel labeling, semantic segmentation, deep learning algorithms

Citation Formats

Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., Auger, M., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bhat, A., Bhattacharya, K., Bishai, M., Blake, A., Bolton, T., Camilleri, L., Caratelli, D., Caro Terrazas, I., Carr, R., Castillo Fernandez, R., Cavanna, F., Cerati, G., Chen, Y., Church, E., Cianci, D., Cohen, E. O., Collin, G. H., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadón, J. I., Del Tutto, M., Devitt, D., Diaz, A., Duffy, K., Dytman, S., Eberly, B., Ereditato, A., Escudero Sanchez, L., Esquivel, J., Evans, J. J., Fadeeva, A. A., Fitzpatrick, R. S., Fleming, B. T., Franco, D., Furmanski, A. P., Garcia-Gamez, D., Genty, V., Goeldi, D., Gollapinni, S., Goodwin, O., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Guzowski, P., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Horton-Smith, G. A., Hourlier, A., Huang, E. -C., James, C., Jan de Vries, J., Ji, X., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Jwa, Y. -J., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Lepetic, I., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Marcocci, S., Mariani, C., Marshall, J., Martin-Albo, J., Martinez Caicedo, D. A., Mastbaum, A., Meddage, V., Mettler, T., Mistry, K., Mogan, A., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murphy, M., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Pandey, V., Paolone, V., Papadopoulou, A., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Rafique, A., Ren, L., Rochester, L., Ross-Lonergan, M., Rudolf von Rohr, C., Russell, B., Scanavini, G., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., St. John, J., Strauss, T., Sutton, K., Sword-Fehlberg, S., Szelc, A. M., Tagg, N., Tang, W., Terao, K., Thomson, M., Thornton, R. T., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Van De Pontseele, W., Van de Water, R. G., Viren, B., Weber, M., Wei, H., Wickremasinghe, D. A., Wierman, K., Williams, Z., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yarbrough, G., Yates, L. E., Zeller, G. P., Zennamo, J., Zhang, C., and MicroBooNE Collaboration 1. Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber. United States: N. p., 2019. Web. doi:10.1103/PhysRevD.99.092001.
Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., Auger, M., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bhat, A., Bhattacharya, K., Bishai, M., Blake, A., Bolton, T., Camilleri, L., Caratelli, D., Caro Terrazas, I., Carr, R., Castillo Fernandez, R., Cavanna, F., Cerati, G., Chen, Y., Church, E., Cianci, D., Cohen, E. O., Collin, G. H., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadón, J. I., Del Tutto, M., Devitt, D., Diaz, A., Duffy, K., Dytman, S., Eberly, B., Ereditato, A., Escudero Sanchez, L., Esquivel, J., Evans, J. J., Fadeeva, A. A., Fitzpatrick, R. S., Fleming, B. T., Franco, D., Furmanski, A. P., Garcia-Gamez, D., Genty, V., Goeldi, D., Gollapinni, S., Goodwin, O., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Guzowski, P., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Horton-Smith, G. A., Hourlier, A., Huang, E. -C., James, C., Jan de Vries, J., Ji, X., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Jwa, Y. -J., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Lepetic, I., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Marcocci, S., Mariani, C., Marshall, J., Martin-Albo, J., Martinez Caicedo, D. A., Mastbaum, A., Meddage, V., Mettler, T., Mistry, K., Mogan, A., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murphy, M., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Pandey, V., Paolone, V., Papadopoulou, A., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Rafique, A., Ren, L., Rochester, L., Ross-Lonergan, M., Rudolf von Rohr, C., Russell, B., Scanavini, G., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., St. John, J., Strauss, T., Sutton, K., Sword-Fehlberg, S., Szelc, A. M., Tagg, N., Tang, W., Terao, K., Thomson, M., Thornton, R. T., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Van De Pontseele, W., Van de Water, R. G., Viren, B., Weber, M., Wei, H., Wickremasinghe, D. A., Wierman, K., Williams, Z., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yarbrough, G., Yates, L. E., Zeller, G. P., Zennamo, J., Zhang, C., & MicroBooNE Collaboration 1. Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber. United States. doi:10.1103/PhysRevD.99.092001.
Adams, C., Alrashed, M., An, R., Anthony, J., Asaadi, J., Ashkenazi, A., Auger, M., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bhat, A., Bhattacharya, K., Bishai, M., Blake, A., Bolton, T., Camilleri, L., Caratelli, D., Caro Terrazas, I., Carr, R., Castillo Fernandez, R., Cavanna, F., Cerati, G., Chen, Y., Church, E., Cianci, D., Cohen, E. O., Collin, G. H., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadón, J. I., Del Tutto, M., Devitt, D., Diaz, A., Duffy, K., Dytman, S., Eberly, B., Ereditato, A., Escudero Sanchez, L., Esquivel, J., Evans, J. J., Fadeeva, A. A., Fitzpatrick, R. S., Fleming, B. T., Franco, D., Furmanski, A. P., Garcia-Gamez, D., Genty, V., Goeldi, D., Gollapinni, S., Goodwin, O., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Guzowski, P., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Horton-Smith, G. A., Hourlier, A., Huang, E. -C., James, C., Jan de Vries, J., Ji, X., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Jwa, Y. -J., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Lepetic, I., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Marcocci, S., Mariani, C., Marshall, J., Martin-Albo, J., Martinez Caicedo, D. A., Mastbaum, A., Meddage, V., Mettler, T., Mistry, K., Mogan, A., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murphy, M., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Pandey, V., Paolone, V., Papadopoulou, A., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Rafique, A., Ren, L., Rochester, L., Ross-Lonergan, M., Rudolf von Rohr, C., Russell, B., Scanavini, G., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., St. John, J., Strauss, T., Sutton, K., Sword-Fehlberg, S., Szelc, A. M., Tagg, N., Tang, W., Terao, K., Thomson, M., Thornton, R. T., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Van De Pontseele, W., Van de Water, R. G., Viren, B., Weber, M., Wei, H., Wickremasinghe, D. A., Wierman, K., Williams, Z., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yarbrough, G., Yates, L. E., Zeller, G. P., Zennamo, J., Zhang, C., and MicroBooNE Collaboration 1. Tue . "Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber". United States. doi:10.1103/PhysRevD.99.092001.
@article{osti_1511498,
title = {Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time projection chamber},
author = {Adams, C. and Alrashed, M. and An, R. and Anthony, J. and Asaadi, J. and Ashkenazi, A. and Auger, M. and Balasubramanian, S. and Baller, B. and Barnes, C. and Barr, G. and Bass, M. and Bay, F. and Bhat, A. and Bhattacharya, K. and Bishai, M. and Blake, A. and Bolton, T. and Camilleri, L. and Caratelli, D. and Caro Terrazas, I. and Carr, R. and Castillo Fernandez, R. and Cavanna, F. and Cerati, G. and Chen, Y. and Church, E. and Cianci, D. and Cohen, E. O. and Collin, G. H. and Conrad, J. M. and Convery, M. and Cooper-Troendle, L. and Crespo-Anadón, J. I. and Del Tutto, M. and Devitt, D. and Diaz, A. and Duffy, K. and Dytman, S. and Eberly, B. and Ereditato, A. and Escudero Sanchez, L. and Esquivel, J. and Evans, J. J. and Fadeeva, A. A. and Fitzpatrick, R. S. and Fleming, B. T. and Franco, D. and Furmanski, A. P. and Garcia-Gamez, D. and Genty, V. and Goeldi, D. and Gollapinni, S. and Goodwin, O. and Gramellini, E. and Greenlee, H. and Grosso, R. and Guenette, R. and Guzowski, P. and Hackenburg, A. and Hamilton, P. and Hen, O. and Hewes, J. and Hill, C. and Horton-Smith, G. A. and Hourlier, A. and Huang, E. -C. and James, C. and Jan de Vries, J. and Ji, X. and Jiang, L. and Johnson, R. A. and Joshi, J. and Jostlein, H. and Jwa, Y. -J. and Karagiorgi, G. and Ketchum, W. and Kirby, B. and Kirby, M. and Kobilarcik, T. and Kreslo, I. and Lepetic, I. and Li, Y. and Lister, A. and Littlejohn, B. R. and Lockwitz, S. and Lorca, D. and Louis, W. C. and Luethi, M. and Lundberg, B. and Luo, X. and Marchionni, A. and Marcocci, S. and Mariani, C. and Marshall, J. and Martin-Albo, J. and Martinez Caicedo, D. A. and Mastbaum, A. and Meddage, V. and Mettler, T. and Mistry, K. and Mogan, A. and Moon, J. and Mooney, M. and Moore, C. D. and Mousseau, J. and Murphy, M. and Murrells, R. and Naples, D. and Nienaber, P. and Nowak, J. and Palamara, O. and Pandey, V. and Paolone, V. and Papadopoulou, A. and Papavassiliou, V. and Pate, S. F. and Pavlovic, Z. and Piasetzky, E. and Porzio, D. and Pulliam, G. and Qian, X. and Raaf, J. L. and Rafique, A. and Ren, L. and Rochester, L. and Ross-Lonergan, M. and Rudolf von Rohr, C. and Russell, B. and Scanavini, G. and Schmitz, D. W. and Schukraft, A. and Seligman, W. and Shaevitz, M. H. and Sharankova, R. and Sinclair, J. and Smith, A. and Snider, E. L. and Soderberg, M. and Söldner-Rembold, S. and Soleti, S. R. and Spentzouris, P. and Spitz, J. and St. John, J. and Strauss, T. and Sutton, K. and Sword-Fehlberg, S. and Szelc, A. M. and Tagg, N. and Tang, W. and Terao, K. and Thomson, M. and Thornton, R. T. and Toups, M. and Tsai, Y. -T. and Tufanli, S. and Usher, T. and Van De Pontseele, W. and Van de Water, R. G. and Viren, B. and Weber, M. and Wei, H. and Wickremasinghe, D. A. and Wierman, K. and Williams, Z. and Wolbers, S. and Wongjirad, T. and Woodruff, K. and Yang, T. and Yarbrough, G. and Yates, L. E. and Zeller, G. P. and Zennamo, J. and Zhang, C. and MicroBooNE Collaboration 1},
abstractNote = {},
doi = {10.1103/PhysRevD.99.092001},
journal = {Physical Review D},
number = 9,
volume = 99,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevD.99.092001

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC
journal, August 2017


Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINER v A experiment
journal, November 2018


Machine learning at the energy and intensity frontiers of particle physics
journal, August 2018


Road Extraction by Deep Residual U-Net
journal, May 2018

  • Zhang, Zhengxin; Liu, Qingjie; Wang, Yunhong
  • IEEE Geoscience and Remote Sensing Letters, Vol. 15, Issue 5
  • DOI: 10.1109/LGRS.2018.2802944

The GENIE neutrino Monte Carlo generator
journal, February 2010

  • Andreopoulos, C.; Bell, A.; Bhattacharya, D.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 614, Issue 1
  • DOI: 10.1016/j.nima.2009.12.009

Michel electron reconstruction using cosmic-ray data from the MicroBooNE LArTPC
journal, September 2017


Background rejection in NEXT using deep neural networks
journal, January 2017


Design and construction of the MicroBooNE detector
journal, February 2017


The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
journal, January 2018


Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber
journal, March 2017


Neutrino flux prediction at MiniBooNE
journal, April 2009


Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam
journal, March 2009


A convolutional neural network neutrino event classifier
journal, September 2016