skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes

Abstract

Permafrost carbon feedback (PCF) modeling has focused on gradual thaw of near-surface permafrost leading to enhanced carbon dioxide and methane emissions that accelerate global climate warming. These state-of-the-art land models have yet to incorporate deeper, abrupt thaw in the PCF. Here we use model data, supported by field observations, radiocarbon dating, and remote sensing, to show that methane and carbon dioxide emissions from abrupt thaw beneath thermokarst lakes will more than double radiative forcing from circumpolar permafrost-soil carbon fluxes this century. Abrupt thaw lake emissions are similar under moderate and high representative concentration pathways (RCP4.5 and RCP8.5), but their relative contribution to the PCF is much larger under the moderate warming scenario. Abrupt thaw accelerates mobilization of deeply frozen, ancient carbon, increasing 14C-depleted permafrost soil carbon emissions by ~125–190% compared to gradual thaw alone. These findings demonstrate the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4];  [5];  [5];  [1];  [1];  [1]; ORCiD logo [3]
  1. Univ. of Alaska Fairbanks, Fairbanks, AK (United States)
  2. Max Planck Institute for Meteorology, Hamburg (Germany); Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam (Germany)
  3. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam (Germany); Univ. of Potsdam, Potsdam (Germany)
  4. Univ. of New Hampshire, Durham, NH (United States)
  5. Alaska Division of Geological & Geophysical Surveys, Fairbanks, AK (United States)
Publication Date:
Research Org.:
Univ. of Arizona, Tucson, AZ (United States); The Ohio State Univ., Columbus, OH (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1511474
Grant/Contract Number:  
[SC0010580; SC0016440]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
[ Journal Volume: 9; Journal Issue: 1]; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Anthony, Katey Walter, Schneider von Deimling, Thomas, Nitze, Ingmar, Frolking, Steve, Emond, Abraham, Daanen, Ronald, Anthony, Peter, Lindgren, Prajna, Jones, Benjamin, and Grosse, Guido. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. United States: N. p., 2018. Web. doi:10.1038/s41467-018-05738-9.
Anthony, Katey Walter, Schneider von Deimling, Thomas, Nitze, Ingmar, Frolking, Steve, Emond, Abraham, Daanen, Ronald, Anthony, Peter, Lindgren, Prajna, Jones, Benjamin, & Grosse, Guido. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. United States. doi:10.1038/s41467-018-05738-9.
Anthony, Katey Walter, Schneider von Deimling, Thomas, Nitze, Ingmar, Frolking, Steve, Emond, Abraham, Daanen, Ronald, Anthony, Peter, Lindgren, Prajna, Jones, Benjamin, and Grosse, Guido. Wed . "21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes". United States. doi:10.1038/s41467-018-05738-9. https://www.osti.gov/servlets/purl/1511474.
@article{osti_1511474,
title = {21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes},
author = {Anthony, Katey Walter and Schneider von Deimling, Thomas and Nitze, Ingmar and Frolking, Steve and Emond, Abraham and Daanen, Ronald and Anthony, Peter and Lindgren, Prajna and Jones, Benjamin and Grosse, Guido},
abstractNote = {Permafrost carbon feedback (PCF) modeling has focused on gradual thaw of near-surface permafrost leading to enhanced carbon dioxide and methane emissions that accelerate global climate warming. These state-of-the-art land models have yet to incorporate deeper, abrupt thaw in the PCF. Here we use model data, supported by field observations, radiocarbon dating, and remote sensing, to show that methane and carbon dioxide emissions from abrupt thaw beneath thermokarst lakes will more than double radiative forcing from circumpolar permafrost-soil carbon fluxes this century. Abrupt thaw lake emissions are similar under moderate and high representative concentration pathways (RCP4.5 and RCP8.5), but their relative contribution to the PCF is much larger under the moderate warming scenario. Abrupt thaw accelerates mobilization of deeply frozen, ancient carbon, increasing 14C-depleted permafrost soil carbon emissions by ~125–190% compared to gradual thaw alone. These findings demonstrate the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.},
doi = {10.1038/s41467-018-05738-9},
journal = {Nature Communications},
number = [1],
volume = [9],
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Disappearing Arctic Lakes
journal, June 2005


Development of thermokarst lakes during the holocene at sites near Mayo, Yukon territory
journal, April 1990


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Circumpolar distribution and carbon storage of thermokarst landscapes
journal, October 2016

  • Olefeldt, D.; Goswami, S.; Grosse, G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13043

Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change
journal, March 2018

  • McGuire, A. David; Lawrence, David M.; Koven, Charles
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1719903115

Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska
journal, January 2013


Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska
journal, January 2003

  • Yoshikawa, Kenji; Hinzman, Larry D.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 2
  • DOI: 10.1002/ppp.451

Soil carbon in the Arctic and the permafrost carbon feedback
journal, November 2012


Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH 4 during the last deglaciation
journal, February 2012

  • Brosius, L. S.; Walter Anthony, K. M.; Grosse, G.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001810

CLIMATE CHANGE: Permafrost and the Global Carbon Budget
journal, June 2006


Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity
journal, January 2015

  • Schneider von Deimling, T.; Grosse, G.; Strauss, J.
  • Biogeosciences, Vol. 12, Issue 11
  • DOI: 10.5194/bg-12-3469-2015

Warming-induced destabilization of peat plateau/thermokarst lake complexes
journal, January 2011

  • Sannel, A. B. K.; Kuhry, P.
  • Journal of Geophysical Research, Vol. 116, Issue G3
  • DOI: 10.1029/2010JG001635

Global Carbon Budget 2016
journal, January 2016

  • Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-605-2016

Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia
journal, September 2012


Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska: TEMPORAL AND SPATIAL PATTERN OF THERMOKARST LAKE AREA CHANGES
journal, November 2012

  • Chen, Min; Rowland, Joel C.; Wilson, Cathy J.
  • Hydrological Processes, Vol. 28, Issue 3
  • DOI: 10.1002/hyp.9642

North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon
journal, August 1997


Shrinking lakes of the Arctic: Spatial relationships and trajectory of change: SHRINKING LAKES OF THE ARCTIC
journal, October 2011

  • Carroll, M. L.; Townshend, J. R. G.; DiMiceli, C. M.
  • Geophysical Research Letters, Vol. 38, Issue 20
  • DOI: 10.1029/2011GL049427

Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska: Catastrophic Thermokarst Lake Drainage
journal, March 2015

  • Jones, Benjamin M.; Arp, Christopher D.
  • Permafrost and Periglacial Processes, Vol. 26, Issue 2
  • DOI: 10.1002/ppp.1842

Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska: Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands, Alaska
journal, January 2014

  • Kanevskiy, Mikhail; Jorgenson, Torre; Shur, Yuri
  • Permafrost and Periglacial Processes, Vol. 25, Issue 1
  • DOI: 10.1002/ppp.1800

High Arctic wetting reduces permafrost carbon feedbacks to climate warming
journal, December 2013

  • Lupascu, M.; Welker, J. M.; Seibt, U.
  • Nature Climate Change, Vol. 4, Issue 1
  • DOI: 10.1038/nclimate2058

Accelerated thawing of subarctic peatland permafrost over the last 50 years
journal, January 2004


Characteristics of the recent warming of permafrost in Alaska
journal, January 2007


Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3
journal, January 2016

  • Westermann, S.; Langer, M.; Boike, J.
  • Geoscientific Model Development, Vol. 9, Issue 2
  • DOI: 10.5194/gmd-9-523-2016

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Methane emissions from pan‐Arctic lakes during the 21st century: An analysis with process‐based models of lake evolution and biogeochemistry
journal, December 2015

  • Tan, Zeli; Zhuang, Qianlai
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 12
  • DOI: 10.1002/2015JG003184

Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle
journal, January 2007

  • Jorgenson, M. Torre; Shur, Yuri
  • Journal of Geophysical Research, Vol. 112, Issue F2
  • DOI: 10.1029/2006JF000531

The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska
journal, July 2016


Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope: ECOSYSTEM APPROACH TO MODEL PERMAFROST
journal, January 2017

  • Nicolsky, D. J.; Romanovsky, V. E.; Panda, S. K.
  • Journal of Geophysical Research: Earth Surface, Vol. 122, Issue 1
  • DOI: 10.1002/2016JF003852

The atmospheric cycling of radiomethane and the "fossil fraction" of the methane source
journal, January 2007

  • Lassey, K. R.; Lowe, D. C.; Smith, A. M.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 8
  • DOI: 10.5194/acp-7-2141-2007

The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology
journal, March 2016

  • Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.
  • Nature Geoscience, Vol. 9, Issue 4
  • DOI: 10.1038/ngeo2674

Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s
journal, August 2016

  • Walter Anthony, Katey; Daanen, Ronald; Anthony, Peter
  • Nature Geoscience, Vol. 9, Issue 9
  • DOI: 10.1038/ngeo2795

Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta
journal, January 2011


Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007-2009: a synthesis
journal, April 2010

  • Romanovsky, Vladimir E.; Smith, Sharon L.; Christiansen, Hanne H.
  • Permafrost and Periglacial Processes, Vol. 21, Issue 2
  • DOI: 10.1002/ppp.689

Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate
journal, June 2016

  • Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido
  • Geophysical Research Letters, Vol. 43, Issue 12
  • DOI: 10.1002/2016GL068506

The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost: GROUNDWATER FLOW AND LAKE TALIK
journal, September 2011

  • Rowland, J. C.; Travis, B. J.; Wilson, C. J.
  • Geophysical Research Letters, Vol. 38, Issue 17
  • DOI: 10.1029/2011GL048497

Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions
journal, May 2007


Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska
journal, February 2014

  • Raynolds, Martha K.; Walker, Donald A.; Ambrosius, Kenneth J.
  • Global Change Biology, Vol. 20, Issue 4
  • DOI: 10.1111/gcb.12500

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
journal, November 2015

  • Koven, C. D.; Schuur, E. A. G.; Schädel, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2054
  • DOI: 10.1098/rsta.2014.0423

Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in arctic Alaska?
journal, December 2010


Abrupt increase in permafrost degradation in Arctic Alaska
journal, January 2006

  • Jorgenson, M. Torre; Shur, Yuri L.; Pullman, Erik R.
  • Geophysical Research Letters, Vol. 33, Issue 2
  • DOI: 10.1029/2005GL024960

Cold season emissions dominate the Arctic tundra methane budget
journal, December 2015

  • Zona, Donatella; Gioli, Beniamino; Commane, Róisín
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1516017113

Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska: SIMULATING THERMOKARST LAKES
journal, March 2012

  • Kessler, M. A.; Plug, L. J.; Walter Anthony, K. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001796

Moisture and temperature sensitivity of CH4 oxidation in boreal soils
journal, October 1996


The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska: DEEP CARBON OF SIBERIA AND ALASKA
journal, December 2013

  • Strauss, Jens; Schirrmeister, Lutz; Grosse, Guido
  • Geophysical Research Letters, Vol. 40, Issue 23
  • DOI: 10.1002/2013GL058088

Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Rates and radiocarbon content of summer ecosystem respiration in response to long-term deeper snow in the High Arctic of NW Greenland: RATES AND SOURCES OF RECO
journal, June 2014

  • Lupascu, M.; Welker, J. M.; Xu, X.
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 6
  • DOI: 10.1002/2013JG002494

A Reconstruction of Regional and Global Temperature for the Past 11,300 Years
journal, March 2013


Thermokarst Lakes as a Source of Atmospheric CH 4 During the Last Deglaciation
journal, October 2007


Quantifying uncertainties of permafrost carbon–climate feedbacks
journal, January 2017


Reconciling divergent trends and millennial variations in Holocene temperatures
journal, February 2018

  • Marsicek, Jeremiah; Shuman, Bryan N.; Bartlein, Patrick J.
  • Nature, Vol. 554, Issue 7690
  • DOI: 10.1038/nature25464

Climate changes in East Europe and Siberia at the Late glacial–holocene transition
journal, May 2002


Thermokarst Lakes on the Arctic Coastal Plain of Alaska: Geomorphic Controls on Bathymetry: Arctic Lakes Bathymetry
journal, July 2012

  • Hinkel, Kenneth M.; Sheng, Yongwei; Lenters, John D.
  • Permafrost and Periglacial Processes, Vol. 23, Issue 3
  • DOI: 10.1002/ppp.1744

Modeling the Arctic freshwater system and its integration in the global system: Lessons learned and future challenges: MODELING THE ARCTIC FRESHWATER SYSTEM
journal, March 2016

  • Lique, Camille; Holland, Marika M.; Dibike, Yonas B.
  • Journal of Geophysical Research: Biogeosciences, Vol. 121, Issue 3
  • DOI: 10.1002/2015JG003120

Effects of excess ground ice on projections of permafrost in a warming climate
journal, December 2014


Methane emissions from permafrost thaw lakes limited by lake drainage
journal, May 2011

  • van Huissteden, J.; Berrittella, C.; Parmentier, F. J. W.
  • Nature Climate Change, Vol. 1, Issue 2
  • DOI: 10.1038/nclimate1101

Betting on negative emissions
journal, September 2014

  • Fuss, Sabine; Canadell, Josep G.; Peters, Glen P.
  • Nature Climate Change, Vol. 4, Issue 10
  • DOI: 10.1038/nclimate2392

A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
journal, March 2014

  • Yvon-Durocher, Gabriel; Allen, Andrew P.; Bastviken, David
  • Nature, Vol. 507, Issue 7493
  • DOI: 10.1038/nature13164

Holocene thermal maximum in the western Arctic (0–180°W)
journal, March 2004


Thermokarst lake methanogenesis along a complete talik profile
journal, January 2015

  • Heslop, J. K.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.
  • Biogeosciences, Vol. 12, Issue 14
  • DOI: 10.5194/bg-12-4317-2015

Controls on methane released through ebullition in peatlands affected by permafrost degradation: Ebullition in peatlands with thermokarst
journal, March 2014

  • Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 119, Issue 3
  • DOI: 10.1002/2013JG002441

The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia: PERMAFROST THAWING TRENDS
journal, November 2012

  • Brutsaert, Wilfried; Hiyama, Tetsuya
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D22
  • DOI: 10.1029/2012JD018344

    Works referencing / citing this record:

    Towards determining spatial methane distribution on Arctic permafrost bluffs with an unmanned aerial system
    journal, February 2019

    • Oberle, Ferdinand K. J.; Gibbs, Ann E.; Richmond, Bruce M.
    • SN Applied Sciences, Vol. 1, Issue 3
    • DOI: 10.1007/s42452-019-0242-9

    Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change
    journal, July 2019

    • Heslop, J. K.; Winkel, M.; Walter Anthony, K. M.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
    • DOI: 10.1029/2018jg004712