DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The influence of point defects on the thermal conductivity of AlN crystals

Abstract

Here, the average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30–325K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268W/m K and 339W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298W/m K and 341W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100K. Lastly, phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [2];  [3];  [4];  [1]; ORCiD logo [2];  [5];  [4];  [1]
  1. North Carolina State Univ., Raleigh, NC (United States)
  2. Leibniz Institute for Crystal Growth (IKZ), Berlin (Germany)
  3. Tokuyama Corporation, Tsukuba (Japan)
  4. North Carolina State Univ., Raleigh, NC (United States); Adroit Materials, Inc., Cary, NC (United States)
  5. Tokyo University of Agriculture and Technology, Koganei (Japan)
Publication Date:
Research Org.:
Adroit Materials, Inc., Cary, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1511154
Alternate Identifier(s):
OSTI ID: 1436905
Grant/Contract Number:  
SC0011883
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 123; Journal Issue: 18; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Rounds, Robert, Sarkar, Biplab, Alden, Dorian, Guo, Qiang, Klump, Andrew, Hartmann, Carsten, Nagashima, Toru, Kirste, Ronny, Franke, Alexander, Bickermann, Matthias, Kumagai, Yoshinao, Sitar, Zlatko, and Collazo, Ramón. The influence of point defects on the thermal conductivity of AlN crystals. United States: N. p., 2018. Web. doi:10.1063/1.5028141.
Rounds, Robert, Sarkar, Biplab, Alden, Dorian, Guo, Qiang, Klump, Andrew, Hartmann, Carsten, Nagashima, Toru, Kirste, Ronny, Franke, Alexander, Bickermann, Matthias, Kumagai, Yoshinao, Sitar, Zlatko, & Collazo, Ramón. The influence of point defects on the thermal conductivity of AlN crystals. United States. https://doi.org/10.1063/1.5028141
Rounds, Robert, Sarkar, Biplab, Alden, Dorian, Guo, Qiang, Klump, Andrew, Hartmann, Carsten, Nagashima, Toru, Kirste, Ronny, Franke, Alexander, Bickermann, Matthias, Kumagai, Yoshinao, Sitar, Zlatko, and Collazo, Ramón. Mon . "The influence of point defects on the thermal conductivity of AlN crystals". United States. https://doi.org/10.1063/1.5028141. https://www.osti.gov/servlets/purl/1511154.
@article{osti_1511154,
title = {The influence of point defects on the thermal conductivity of AlN crystals},
author = {Rounds, Robert and Sarkar, Biplab and Alden, Dorian and Guo, Qiang and Klump, Andrew and Hartmann, Carsten and Nagashima, Toru and Kirste, Ronny and Franke, Alexander and Bickermann, Matthias and Kumagai, Yoshinao and Sitar, Zlatko and Collazo, Ramón},
abstractNote = {Here, the average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30–325K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268W/m K and 339W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298W/m K and 341W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100K. Lastly, phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.},
doi = {10.1063/1.5028141},
journal = {Journal of Applied Physics},
number = 18,
volume = 123,
place = {United States},
year = {Mon May 14 00:00:00 EDT 2018},
month = {Mon May 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Thermal conductivity as a function of temperature for InAs, Si, and diamond with an θD of 280, 643, and 1870 K, respectively.

Save / Share:

Works referenced in this record:

AlGaN devices and growth of device structures
journal, February 2015


Thermal conductivity of AlN thin films deposited by RF magnetron sputtering
journal, February 2012


Thermal conductivity of amorphous solids above the plateau
journal, March 1987


Optically pumped UV lasers grown on bulk AlN substrates
journal, February 2012

  • Wunderer, T.; Chua, C. L.; Northrup, J. E.
  • physica status solidi (c), Vol. 9, Issue 3-4
  • DOI: 10.1002/pssc.201100424

Vacancy compensation and related donor-acceptor pair recombination in bulk AlN
journal, October 2013

  • Gaddy, Benjamin E.; Bryan, Zachary; Bryan, Isaac
  • Applied Physics Letters, Vol. 103, Issue 16
  • DOI: 10.1063/1.4824731

Seeded growth of AlN bulk crystals in m- and c-orientation
journal, December 2009


Seeded growth of AlN single crystals by physical vapor transport
journal, January 2006


Thermal Conductivity of Some Alkali Halides Containing Divalent Impurities. I. Phonon Resonances
journal, March 1967


Phonon scattering in lightly neutron-irradiated diamond
journal, January 1993

  • Morelli, Donald T.; Perry, Thomas A.; Farmer, John W.
  • Physical Review B, Vol. 47, Issue 1
  • DOI: 10.1103/PhysRevB.47.131

Thermal Conductivity in Sodium Chloride Crystals Containing Silver Colloids
journal, July 1966


Carrier-Concentration Dependence of Electron-Phonon Scattering in Te-Doped GaSb at Low Temperature
journal, June 1969


Origins of optical absorption and emission lines in AlN
journal, September 2014

  • Yan, Qimin; Janotti, Anderson; Scheffler, Matthias
  • Applied Physics Letters, Vol. 105, Issue 11
  • DOI: 10.1063/1.4895786

Thermal Conductivity of MgO, Al 2 O 3 , Mg Al 2 O 4 , and Fe 3 O 4 Crystals from 3° to 300°K
journal, April 1962


Effect of Dislocations on the Thermal Conductivity of Lithium Fluoride
journal, March 1959

  • Sproull, R. L.; Moss, M.; Weinstock, H.
  • Journal of Applied Physics, Vol. 30, Issue 3
  • DOI: 10.1063/1.1735163

On the origin of the 265 nm absorption band in AlN bulk crystals
journal, May 2012

  • Collazo, Ramón; Xie, Jinqiao; Gaddy, Benjamin E.
  • Applied Physics Letters, Vol. 100, Issue 19
  • DOI: 10.1063/1.4717623

High thermal conductivity aluminum nitride ceramic substrates and packages
journal, June 1990

  • Miyashiro, F.; Iwase, N.; Tsuge, A.
  • IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, Issue 2
  • DOI: 10.1109/33.56163

Vacancy-oxygen complexes and their optical properties in AlN epitaxial films studied by positron annihilation
journal, March 2009

  • Uedono, A.; Ishibashi, S.; Keller, S.
  • Journal of Applied Physics, Vol. 105, Issue 5
  • DOI: 10.1063/1.3079333

Advances in Bulk Crystal Growth of AlN and GaN
journal, April 2009


Thermal Conductivity and Phonon Resonance Scattering
journal, June 1962


Thermal Conductivity in Mixed Alkali Halides: KCl:Li and KBr:Li
journal, July 1967


Ultraviolet luminescence in AlN
journal, January 2011

  • Schulz, T.; Albrecht, M.; Irmscher, K.
  • physica status solidi (b), Vol. 248, Issue 6
  • DOI: 10.1002/pssb.201046616

Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films
journal, October 2004

  • Zhao, Yimin; Zhu, Chunlin; Wang, Sigen
  • Journal of Applied Physics, Vol. 96, Issue 8
  • DOI: 10.1063/1.1785850

Nonmetallic crystals with high thermal conductivity
journal, January 1973


Experimental and Theoretical Study of Phonon Scattering from Simple Point Defects in Sodium Chloride
journal, June 1967


Phonon Scattering by Point Defects
journal, August 1963


Rotational Degrees of Freedom of Molecules in Solids. II. The Nitrite Ion in Alkali Halides
journal, August 1966


Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications
journal, May 2011

  • Collazo, Ramón; Mita, Seiji; Xie, Jinqiao
  • physica status solidi (c), Vol. 8, Issue 7-8
  • DOI: 10.1002/pssc.201000964

Thermal conductivity of indium antimonide at low temperatures
journal, April 1971

  • Kosarev, V. V.; Tamarin, P. V.; Shalyt, S. S.
  • Physica Status Solidi (b), Vol. 44, Issue 2
  • DOI: 10.1002/pssb.2220440209

Thermal conductivity of bulk GaN—Effects of oxygen, magnesium doping, and strain field compensation
journal, November 2014

  • Simon, Roland B.; Anaya, Julian; Kuball, Martin
  • Applied Physics Letters, Vol. 105, Issue 20
  • DOI: 10.1063/1.4901967

Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramic
journal, December 2002


Scattering of Long-Wavelength Phonons by Point Imperfections in Crystals
journal, November 1965


Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
journal, December 2017

  • Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.
  • Advanced Electronic Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aelm.201600501

Thermal conductivity measurement from 30 to 750 K: the 3ω method
journal, February 1990

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 61, Issue 2
  • DOI: 10.1063/1.1141498

On the Origin of the 4.7 eV Absorption and 2.8 eV Emission Bands in Bulk AlN Substrates
journal, April 2016


The Scattering of Low-Frequency Lattice Waves by Static Imperfections
journal, December 1955


The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN
journal, May 2014

  • Gaddy, Benjamin E.; Bryan, Zachary; Bryan, Isaac
  • Applied Physics Letters, Vol. 104, Issue 20
  • DOI: 10.1063/1.4878657

The Preparation and Properties of Aluminum Nitride Films
journal, January 1975

  • Chu, T. L.
  • Journal of The Electrochemical Society, Vol. 122, Issue 7
  • DOI: 10.1149/1.2134385

Microstructure and thermal conductivity of epitaxial AlN thin films
journal, December 1994


Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF
journal, April 1967


Influence of Localized Modes on Thermal Conductivity
journal, August 1963


Report on a second round robin measurement of the thermal conductivity of CVD diamond
journal, December 1998


Effect of Annealing in CF4 Gas Atmosphere on Thermal Conductivity of AlN Ceramics
journal, January 1988

  • Fujimoto, Masayuki; Ueda, Syuusaku
  • Journal of the Ceramic Society of Japan, Vol. 96, Issue 1120
  • DOI: 10.2109/jcersj.96.1210

Growth and Characterization of AlN and AlGaN Epitaxial Films on AlN Single Crystal Substrates
journal, January 2011

  • Dalmau, R.; Moody, B.; Schlesser, R.
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3560527

Rotational Degrees of Freedom of Molecules in Solids. I. The Cyanide Ion in Alkali Halides
journal, August 1966


Rotational Degrees of Freedom of Molecules in Solids. III. Thermal Properties of RbCl: CN
journal, March 1968


Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
journal, November 2002


Fabrication of vertical Schottky barrier diodes on n-type freestanding AlN substrates grown by hydride vapor phase epitaxy
journal, May 2015

  • Kinoshita, Toru; Nagashima, Toru; Obata, Toshiyuki
  • Applied Physics Express, Vol. 8, Issue 6
  • DOI: 10.7567/APEX.8.061003

The intrinsic thermal conductivity of AIN
journal, January 1987

  • Slack, Glen A.; Tanzilli, R. A.; Pohl, R. O.
  • Journal of Physics and Chemistry of Solids, Vol. 48, Issue 7
  • DOI: 10.1016/0022-3697(87)90153-3

Thermal Conductivity of GaAs and GaAs 1− x P x Laser Semiconductors
journal, February 1965

  • Carlson, R. O.; Slack, G. A.; Silverman, S. J.
  • Journal of Applied Physics, Vol. 36, Issue 2
  • DOI: 10.1063/1.1714018

Thermal Conductivity of Some Alkali Halides Containing Divalent Impurities. II. Precipitate Scattering
journal, March 1967


Structural and Optical Properties of Carbon-Doped AlN Substrates Grown by Hydride Vapor Phase Epitaxy Using AlN Substrates Prepared by Physical Vapor Transport
journal, November 2012

  • Nagashima, Toru; Kubota, Yuki; Kinoshita, Toru
  • Applied Physics Express, Vol. 5, Issue 12
  • DOI: 10.1143/APEX.5.125501

Low Defect Density Bulk AlN Substrates for High Performance Electronics and Optoelectronics
journal, May 2012


Works referencing / citing this record:

Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes
journal, September 2018

  • Rounds, Robert; Sarkar, Biplab; Sochacki, Tomasz
  • Journal of Applied Physics, Vol. 124, Issue 10
  • DOI: 10.1063/1.5047531

Thermal conductivity of crystalline AlN and the influence of atomic-scale defects
journal, November 2019

  • Xu, Runjie Lily; Muñoz Rojo, Miguel; Islam, S. M.
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5097172

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.